精英家教网 > 高中数学 > 题目详情

【题目】如图是我国20181月至12月石油进口量统计图(其中同比是今年第个月与去年第个月之比),则下列说法错误的是(

A.2018年下半年我国原油进口总量高于2018年上半年

B.201812个月中我国原油月最高进口量比月最低进口量高1152万吨

C.2018年我国原油进口总量高于2017年我国原油进口总量

D.20181—5月各月与2017年同期相比较,我国原油进口量有增有减

【答案】D

【解析】

结合统计图表,对答案选项逐一判断即可.

由图易知AB正确;由数量同比折线图可知,除6月及10月同比减少外,其他月份同比都递增,且1月,4月,11月,12月同比增长较多,故2018年我国原油进口总量高于2017年我国原油进口总量,C正确;20181月至5月的同比数据均为正数,故20181—5月各月与2017年同期相比较,我国原油进口量只增不减,D错误.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .

(1)求椭圆 的方程;

(2)过点 的直线 交椭圆于 两个不同的点,且 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过两点,为坐标原点.

1)求椭圆的标准方程;

2)设动直线与椭圆有且仅有一个公共点,且与圆相交于两点,试问直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,过椭圆的左焦点和上顶点的直线与圆相切.

1)求椭圆的方程;

2)过点的直线与椭圆交于两点,点与原点关于直线对称,试求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,有一动点到直线的距离和到点的距离比值是

1)求动点的轨迹的方程;

2)已知点(异于点)为曲线上一个动点,过点作直线的垂线交曲线于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)若,求函数的单调区间;

2)若函数在区间上为单调递减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,对于给定的正整数,记.若对任意的正整数满足:,且是等差数列,则称数列为“”数列.

(1)若数列的前项和为,证明:数列;

(2)若数列数列,且,求数列的通项公式;

(3)若数列数列,证明:是等差数列 .

查看答案和解析>>

同步练习册答案