精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2x-x2,则函数f(x)的零点的个数为(  )
A.1个B.2个C.3个D.4个

分析 可先结合函数的特点将问题转化为研究两个函数图象交点的问题.继而问题可获得解答.

解答 解:由题意可知:
要研究函数f(x)=x2-2x的零点个数,
只需研究函数y=2x,y=x2的图象交点个数即可.
画出函数y=2x,y=x2的图象
由图象可得有3个交点,如第一象限的A(2,4),B(4,16)及第二象限的点C.
故选:C.

点评 本题考查的是函数零点的个数判定问题.在解答的过程当中充分体现了函数与方程的思想、数形结合的思想以及问题转化的思想.值得同学们体会和反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.(x-1)8展开式中第4项的二项式系数是(  )
A.70B.-70C.56D.-56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列判断中,正确的判断是(  )(填序号)
A.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则向量$\overrightarrow{a}$和$\overrightarrow{b}$是相反向量
B.已知非零向量$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$-$\overrightarrow{b}$必与$\overrightarrow{a}$是平行向量
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{b}$=λ$\overrightarrow{a}$(λ∈R)
D.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y=2x2+1,值域为{9}的“孪生函数”就有三个,那么解析式为y=log2(x2-1),值域为{1,5}的“孪生函数”共有(  )
A.6个B.7个C.8个D.9个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}对任意的自然数n满足:a1+2a2+3a3+…+nan=2n-1.
(Ⅰ)求a1及通项an
(Ⅱ)设数列$\{\frac{1}{a_n}\}$的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={x|x≤5,x∈N},A={1,2,3},B={3,4},则CU(A∪B)=(  )
A.{1,2,3,4}B.{0,5}C.{5}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列$\{a_n^{\;}\}$满足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求证:数列$\{a_n^{\;}+2\}$是等比数列,并求出通项公式an
(2)若数列$\{b_n^{\;}\}满足b_n^{\;}={log_2}({a_n}+2)$,设Tn是数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等比数列{an}中,a1+a2+a3=1,a4+a5+a6=8,则该等比数列的公比为(  )
A.-2B.2C.-2或1D.2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足约束条件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,则目标函数z=7x-y的最小值为5.

查看答案和解析>>

同步练习册答案