精英家教网 > 高中数学 > 题目详情
如图,△ABC的周长为8,C(0,0),B(2,0),过B的直线与∠CAB的外角平分线垂直,且交AC的延长线于M,求点M的轨迹方程.
考点:圆锥曲线的轨迹问题
专题:综合题,直线与圆
分析:利用过B的直线与∠CAB的外角平分线垂直,且交AC的延长线于M,可得|MA|=|AB|,结合△ABC的周长为8,C(0,0),B(2,0),可得|CM|=|AC|+|AM|=6,即可求出点M的轨迹方程.
解答: 解:设M(x,y),则
∵过B的直线与∠CAB的外角平分线垂直,且交AC的延长线于M,
∴|MA|=|AB|,
∵△ABC的周长为8,C(0,0),B(2,0),
∴|AC|+|AB|=6,
∴|CM|=|AC|+|AM|=6,
∴点M的轨迹方程为x2+y2=36.
点评:本题考查点M的轨迹方程,考查学生分析解决问题的能力,确定|CM|=|AC|+|AM|=6是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
2
+α)=
1
3
,则cos2α等于(  )
A、
7
9
B、
8
9
C、-
7
9
D、-
8
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x)=log2
6x+13
4
,则f(1)=(  )
A、log2
19
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求平面BEF与平面BED夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过棱锥的高的两个三等分点作两个平行于棱锥底面的截面,则这个棱锥被这两个截面分成的三部分的体积比为(  )
A、1:2:3
B、4:9:27
C、1:8:27
D、1:7:19

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C的中心在原点,以点A(
2
3
3
,0)为右焦点,以x=
3
6
为右准线.
(1)求双曲线C的方程;
(2)设直线l:y=kx+1与双曲线交于A、B两点,若以A、B为直径的圆经过原点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,A(1,0),B(2,0)是两个定点,曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(Ⅰ)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(1,0)为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.[来.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
4
)(A>0,ω>0)的最大值为2,相邻两条对称轴的距离为
π
2
,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=17-3n,则使其前n项的和Sn取最大值时n的值为(  )
A、4B、5C、6D、7

查看答案和解析>>

同步练习册答案