精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)当时,证明:在区间上是增函数;

2)当,函数的零点个数,并说明理由;

3)求函数的对称中心,并说明理由.

【答案】1)证明见解析;(2,理由见解析;(3.

【解析】

1)化简函数的解析式,根据单调性的定义可证明出函数在区间上是增函数;

2)判断函数在各区间的单调性,从而得出结论;

3)将函数进行平移变换构造一个奇函数即可得出对称中心.

1)当时,

任取,即

.

,则,即

因此,函数在区间上为增函数;

2)当时,

显然当时,函数为增函数,其中

时,,当时,

所以,函数在区间上有且只有一个零点;

又当时,

时,

所以,函数上没有零点,

因此,函数共有个零点;

3

构造函数

可知,函数的定义域为,关于原点对称,

所以,函数为奇函数,其对称中心为坐标原点,

且有

为了得到函数的图象,可将函数的图象向上平移个单位长度,向左平移个单位长度即可.

因此,函数图象的对称中心坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】aR,函数f(x)=x|x-a|-a.

(1) f(x)为奇函数,求a的值;

(2) 若对任意的x[2,3],f(x)≥0恒成立,求a的取值范围;

(3) a>4时,求函数y=f(f(x)+a)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且.当栓子在滑槽AB内作往复运动时,带动转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.

)求曲线C的方程;

)设动直线与两定直线分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):

全月应缴纳所得额

税率

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:

项目

每月税前抵扣金额(元)

说明

子女教育

1000

一年按12月计算,可扣12000

继续教育

400

一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600

大病医疗

5000

一年最高抵扣金额为60000

住房贷款利息

1000

一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除

住房租金

1500/1000/800

扣除金额需要根据城市而定

赡养老人

2000

一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上

老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734.201911月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义为两点的“切比雪夫距离”,又设点上任意一点,称的最小值为点到直线的“切比雪夫距离”,记作,给出四个命题,正确的是________.

①对任意三点,都有

到原点的“切比雪夫距离”等于的点的轨迹是正方形;

已知点和直线,则

定点,动点满足,则点的轨迹与直线为常数)有且仅有个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,点为椭圆的右顶点,直线与椭圆相交于不同于点的两个点.

1)求椭圆的标准方程;

2)当时,求面积的最大值;

3)若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图被称为“中华第一图”.从孔庙大成殿梁柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到韩国国旗,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为,设点,则的最大值与最小值之差是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租车公司给出的财务报表如下:

年度

项目

2014

1-12月)

2015

1-12月)

2016

1-11月)

接单量(单)

14463272

40125125

60331996

油费(元)

214301962

581305364

653214963

平均每单油费(元)

14.82

14.49

平均每单里程(公里)

15

15

每公里油耗(元)

0.7

0.7

0.7

有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.

1)分别计算20142015年该公司的空驶率的值(精确到0.01%);

22016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到1130日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个太极函数,则下列有关说法中:

①对于圆的所有非常数函数的太极函数中,都不能为偶函数;

②函数是圆的一个太极函数;

③直线所对应的函数一定是圆的太极函数;

④若函数是圆的太极函数,则

所有正确的是__________

查看答案和解析>>

同步练习册答案