精英家教网 > 高中数学 > 题目详情
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
【答案】分析:(1)由年利润W=年产量x×每千件的销售收入为R(x)-成本,又由,且年固定成本为10万元,每生产1千件需另投入2.7万元.我们易得年利润W(万元)关于年产量x(千件)的函数解析式;
(2)由(1)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.
解答:解:(1)当
当x>10时,W=xR(x)-(10+2.7x)=98--2.7x.
∴W=

(2)①当0<x<10时,由W'=8.1-=0,得x=9,
且当x∈(0,9)时,W'>0;当x∈(9,10)时,W'<0,
∴当x=9时,W取最大值,且
②当x>10时,
当且仅当
即x=时,W=38,
故当x=时,W取最大值38.
综合①②知当x=9时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.
点评:本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
10.8-
1
30
x2(0<x≤10)
108
x
-
1000
3x2
(x>10)

(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省盐城市射阳县陈洋中学高三(上)第二次段考数学试卷(解析版) 题型:解答题

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源:2012届河北省高二下学期期末考试理科数学(A卷) 题型:解答题

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为

 

R万元,且R(1)写出年利润关于年产量

 

的函数解析式;

(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。

(注:年利润=年销售收入-年总成本)

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省高二下学期期末考试文科数学 题型:解答题

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R

 

(1)写出年利润关于年产量的函数解析式;

(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。

(注:年利润=年销售收入-年总成本)

 

查看答案和解析>>

同步练习册答案