精英家教网 > 高中数学 > 题目详情

在数列中,,且对于任意自然数,的等差中项,则等于(   )

A.96B.48C.32D.24

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=4且对于任意的自然数n∈N+都有an+1=2(an-n+1)
(I)证明数列{an-2n}是等比数列.
(II)求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•柳州三模)已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记bn=2(1-
1
an
)
,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有
k
k=1
g(k)
(ak+1)(ak+1+1)
1
3
成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}满足a1=2,数列{(
1
2
)an}
是各项和等于
2b
2b+2-4
的无穷等比数列,其中常数b是正整数.
(1)求无穷等比数列{(
1
2
)an}
的公比和数列{an}的通项公式;
(2)在无穷等比数列{bn}中,b1=a1,b2=a2,试找出一个b的具体值,使得数列{bn}的任意项都在数列{an}中;试找出一个b的具体值,使得数列{bn}的项不都在数列{an}中,简要说明理由;
(3)对于问题(2)继续进行研究,探究当且仅当b取怎样的值时,数列{bn}的任意项都在数列{an}中,说明理由.

查看答案和解析>>

科目:高中数学 来源:河南省09-10高二年级校内竞赛数学试题 题型:选择题

在数列中,,且对于任意自然数,的等差中项,则等于(    )

(A) 96           (B) 48            (C) 32            (D) 24

 

查看答案和解析>>

同步练习册答案