精英家教网 > 高中数学 > 题目详情

【题目】已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c﹣a=2acosB,则 的取值范围是

【答案】(
【解析】解:∵c﹣a=2acosB, ∴由正弦定理可得:sinC=2sinAcosB+sinA,
∴sinAcosB+cosAsinB=2sinAcosB+sinA,可得:cosAsinB﹣sinAcosB=sinA,即:sin(B﹣A)=sinA,
∵A,B为锐角,可得:B﹣A=A,可得:B=2A∈(0, ),
∴A∈(0, ),
又∵C=π﹣3A∈(0, ),可得:A∈( ),
∴综上,可得A∈( ),可得:sinA∈( ),
=sinA∈( ).
故答案为:( ).
由正弦定理,三角函数恒等变换的应用化简可得sin(B﹣A)=sinA,由A,B为锐角,可得B=2A,解得A的范围,可得求sinA∈( ),化简所求即可得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 )的最大值为 ,最小值为 .

(1)求 的值;

(2)将函数 图象向右平移 个单位后,再将图象上所有点的纵坐标扩大到原来的 倍,横坐标不变,得到函数 的图象,求方程 的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a>0且a≠1,函数f(x)=x2-(a+1)xalnx.

(1)当a=2时,求曲线yf(x)在(3,f(3))处切线的斜率;

(2)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为常数,e=2.71828……是自然对数的底数).
(1)当 时,求函数 的单调区间;
(2)若函数 内存在两个极值点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:① ;②26-7;③ ,其中正确的结论是( )
A.仅有①
B.仅有②
C.②与③
D.仅有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

-1

1

3

1

-1

1

3

(1)根据表格提供的数据画出函数的图像并求出函数解析式;

(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从 老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能 自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行 统计,样本分布被制作成如图表:
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发 放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下 老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出s的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,且.

1)求证:数列是等差数列;

2)设,求.

查看答案和解析>>

同步练习册答案