分析 若 ①f(x)的周期为π,则 函数f(x)=sin(2x+φ),若再由②,可得φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$),显然能推出③④成立.
解答 解:若①f(x)的周期为π,则ω=2,函数f(x)=sin(2x+φ).
若再由②f(x)的图象关于直线x=$\frac{π}{12}$对称,则sin(2×$\frac{π}{12}$+φ) 取最值,
又∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴2×$\frac{π}{12}$+φ=$\frac{π}{2}$,
∴φ=$\frac{π}{3}$.
此时,f(x)=sin(2x+$\frac{π}{3}$),③④成立,
故由①②可以推出 ③④成立.
故答案为:①②,③④.另:①③⇒②④也正确.
点评 本题考查正弦函数的对称性,三角函数的周期性与求法,确定出函数的解析式,是解题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | -4 | C. | ±4 | D. | 与A有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{8}-\frac{y^2}{4}=1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com