精英家教网 > 高中数学 > 题目详情

【题目】已知长方体中,分别为所在线段的中点,则满足的图形为(

A.B.

C.D.

【答案】C

【解析】

根据线面垂直的判定定理,证明线面垂直,进而可得线线垂直.对于不正确选项,将异面直线平移,平移到同一平面内,利用勾股定理逆定理说明线段不垂直即可.

长方体中,分别为所在线段的中点,设,则.

对于A,由直线与平面位置关系可知,因而为异面直线但是不垂直;

对于B,取中点,连接,如下图所示:

,不满足勾股定理逆定理,因而不成立.

在选项C中,连接,如下图所示:

因为,则

,故平面,故

,则平面,则

对于D,取中点中点,.连接,如下图所示:

,不满足勾股定理,所以不垂直

因为,不垂直.

综上可知,满足不垂直的只有C

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)当时,设函数,若存在区间,使得函数上的值域为,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知二项式的展开式中前三项的系数成等差数列.

(1)的值;

(2).

的值;

的值;

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDA1B1C1D1中,底面ABCD是边长为2的正方形.

1)证明:A1C1平面ACD1

2)求异面直线CDAD1所成角的大小;

3)已知三棱锥D1ACD的体积为,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,直线轴相交于点,且的中点.

(Ⅰ)求椭圆的离心率;

(Ⅱ)过点的直线与椭圆相交于两点,都在轴上方,并且之间,且到直线的距离是到直线距离的倍.

①记的面积分别为,求

②若原点到直线的距离为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且的面积是

Ⅰ.求椭圆C的方程;

Ⅱ.设直线与椭圆C交于PQ两点,点P关于x轴的对称点为不重合),则直线x轴交于点H,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数满足,其中.实数满足.

1)若,且为真,求实数的取值范围;

2)非是非的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动员射击一次所得环数的分布如下:

7

8

9

10

0

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.

(Ⅰ)求该运动员两次都命中7环的概率.

(Ⅱ)求的分布列及其数学期望.

查看答案和解析>>

同步练习册答案