精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为且满足:,

(1)、求数列的前项和为

(2)、若不等式恒成立,求实数的取值范围。

【答案】(1)

【解析】

由题知,当n≥2 时,有Sn+1=an+2﹣an+1,Sn﹣1+1=an+1﹣an,两式相减得an+2=2an+1,利用等

比数列的通项公式与求和公式可得an,Sn.(2)由题得再利用数列的单调性即可得出实数的取值范围

由题知,当n≥2 时,有Sn+1=an+2﹣an+1,Sn﹣1+1=an+1﹣an

两式相减得an+2=2an+1

a1=1,a2=2, a3=4,故an+1=2an 对任意n∈N* 成立,

(2)恒成立只需的最大值,

n=1时,右式取得最大值1,∴λ>1.

故答案为:λ>1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C截直线y=1所得线段的长度为2

(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在三棱锥中,分别是的中点,

(1) 求证:平面

(2) 求异面直线所成角的余弦值;

(3) 求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(13分)
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°. (Ⅰ)证明:直线BC∥平面PAD;
(Ⅱ)若△PAD面积为2 ,求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三点在椭圆C上.(12分)
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.

查看答案和解析>>

同步练习册答案