精英家教网 > 高中数学 > 题目详情
已知双曲线C的方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,它的左、右焦点分别F1,F2,左右顶点为A1,A2,过焦点F2先做其渐近线的垂线,垂足为p,再作与x轴垂直的直线与曲线C交于点Q,R,若PF2,A1A2,QF1依次成等差数列,则离心率e=(  )
分析:由题设条件推导出|F2P|=b,|QF1|=2a-
b2
a
,|A1A2|=2a,由PF2,A1A2,QF1依次成等差数列,知b,2a,2a-
b2
a
依次成等差数列,由此能求出离心率e.
解答:解:由题设知双曲线C的方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
的一条渐近线方程l:y=
b
a
x

∵右焦点F(c,0),∴F2P⊥l,
∴|F2P|=
|bc-0|
c
=b,
∵|F2Q|⊥x轴,
c2
a2
-
|F2Q|2
b2
=1
,解得|F2Q|=
b2
a

∴|QF1|=2a-
b2
a

∵|A1A2|=2a,PF2,A1A2,QF1依次成等差数列,
∴b,2a,2a-
b2
a
依次成等差数列,
∴4a=b+2a+
b2
a

∴2=
c2-a2
a
+
c2-a2
a2
,即
e2-1
+e2=3

解得e=
2

故选A.
点评:本题考查双曲线的离心率的求法,解题时要认真审题,注意点到直线的距离公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C的方程为:
x2
9
-
y2
16
=1
(1)求双曲线C的离心率;
(2)求与双曲线C有公共的渐近线,且经过点A(-3,2
3
)的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为
y2
a2
-
x2
b2
=1
(a>0,b>0),离心率e=
5
2
,顶点到渐近线的距离为
2
5
5
.求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)已知双曲线C的方程为x2-
y2
4
=1,点A(m,2m)和点B(n,-2n)(其中m和n均为正数)是双曲线C的两条渐近线上的两个动点,双曲线C上的点P满足
AP
=λ•
PB
(其中λ∈[
1
2
,3]).
(1)用λ的解析式表示mn;
(2)求△AOB(O为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),过右焦点F作双曲线在一,三象限的渐近线的垂线l,垂足为P,l与双曲线C的左右的交点分别为A,B
(1)求证:点P在直线x=
a2
c
上(C为半焦距).
(2)求双曲线C的离心率e的取值范围.
(3)若|AP|=3|PB|,求离心率.

查看答案和解析>>

同步练习册答案