精英家教网 > 高中数学 > 题目详情
3.4名优秀学生全部保送到3所学校去,每所学校至少去一名学生,则不同的保送方案有(  )
A.12种B.72种C.18种D.36种

分析 根据题意,分2步进行分析:①、将4名学生分为3组,一组2人、其余2组每组1人,②、将分好的3组进行全排列,对应3所学校,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、将4名学生分为3组,一组2人、其余2组每组1人,有C42=6种情况,
②、将分好的3组进行全排列,对应3所学校,有A33=6种情况,
则不同的保送方案有6×6=36种,
故选:D.

点评 本题考查分步计数原理的运用,对于此类问题一般要先分组、再对应,关键是审清题意,明确分组的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.sin45°cos15°-cos135°sin165°=(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-3)}}$的定义域为(  )
A.($\frac{3}{2}$,+∞)B.(2,+∞)C.(0,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)是定义在R上的奇函数,且在(-∞,0]上是增函数,若f(a-2)>-f(a),则实数a的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表:
  身高达标 身高不达标 总计
 积极参加体育锻炼 40  75
 不
积极参加体育锻炼
 10  
 总计   100
(1)请完成上表;
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
 P(k2≥k0 0.15 0.10
 k0 2.072 2.706

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从1,2,4,8这4个数中一次随机地取两个数,则所取两个数的乘积为8的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.连掷两次骰子分别得到点数m,n,向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(-1,1),若△ABC中$\overrightarrow{AB}$与$\overrightarrow{a}$同向,$\overrightarrow{CB}$与$\overrightarrow{b}$反向,则∠ABC是钝角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x2-2x-3≤0},N={x|-2<x<2},则M∩N=(  )
A.B.{x|-1≤x<2}C.{x|-2≤x<-1}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:“?x∈R,ex>0”,命题q:“?x0∈R,x0-2>x02”,则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

同步练习册答案