精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线与曲线分别交于两点,求.

【答案】(1);(2)

【解析】试题分析:1)由sin2α+cos2α=1,能求出曲线C1的普通方程,由x=ρcosθ,y=ρsinθ,能求出曲线C2的极坐标方程;(2)依题意设A(),B(),将代入曲线C1的极坐标方程,求出ρ1=3,将(ρ0)代入曲线C2的极坐标方程求出,由此能求出|AB|

解析:

(Ⅰ)由.

所以曲线的普通方程为.

,代入,得到,化简得到曲线的极坐标方程为.

(Ⅱ)依题意可设,曲线的极坐标方程为.

代入的极坐标方程得,解得.

代入的极坐标方程得.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一项抛掷骰子的过关游戏规定:在第关要抛掷一颗骰子次,如里这次抛掷所出现的点数和大于,则算过关,可以随意挑战某一关.若直接挑战第三关,则通关的概率为______;若直接挑战第四关,则通关的慨率为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.

(1)求椭圆的标准方程;

(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线交于点为坐标原点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,其焦距为,若,则称椭圆为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是,以,为顶点的菱形的内切圆过焦点.

(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;

(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,

(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;

〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测试中,卷面满分为考生得分为整数规定分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:

分数段

午休考生人数

29

34

37

29

23

18

10

不午休考生人数

20

52

68

30

15

12

3

(1)根据上述表格完成下列列联表:

及格人数

不及格人数

合计

午休

不午休

合计

(2)判断“能否在犯错误的概率不超过的前提下认为成绩及格与午休有关”?

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

(参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数上有最大值1,设

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).

查看答案和解析>>

同步练习册答案