【题目】设实数x,y满足不等式组 ,(2,1)是目标函数z=﹣ax+y取最大值的唯一最优解,则实数a的取值范围是( )
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]
科目:高中数学 来源: 题型:
【题目】抛物线 ( )的焦点为 ,已知点 , 为抛物线上的两个动点,且满足 .过弦 的中点 作抛物线准线的垂线 ,垂足为 ,则 的最大值为__________.
【答案】1
【解析】设,在三角形ABF中,用余弦定理得到
,
故最大值为1.
故答案为:1.
点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。
【题型】填空题
【结束】
17
【题目】设 的内角 , , 所对的边分别为 , , ,且 , .
(1)当 时,求 的值;
(2)当的面积为 时,求的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为奇函数,为偶函数,且.
(Ⅰ)求函数及的解析式;
(Ⅱ)用函数单调性的定义证明:函数在上是减函数;
(Ⅲ)若关于的方程有解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)点M在线段PC上,PM=tPC,试确定实数t的值,使PA∥平面MQB;
(Ⅲ)在(Ⅱ)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 (a>b>0)的焦点在圆x2+y2=3上,且离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点O的直线l与椭圆C交于A,B两点,F为右焦点,若△FAB为直角三角形,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运输公司有7辆可载的型卡车与4辆可载的型卡车,有9名驾驶员,建筑某段高速公路中,此公司承包了每天至少搬运沥青的任务,已知每辆卡车每天往返的次数为型车8次, 型车6次,每辆卡车每天往返的成本费为型车160元, 型车252元,每天派出型车和型车各多少辆,公司所花的成本费最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.
(1)求二面角A﹣PB﹣C的余弦值.
(2)在线段CP上是否存在一点E,使得DE⊥PB,若存在,求线段CE的长度,不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使| A1B1|=| A2B2|,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )
A. (,2] B. [,2) C. (,+) D. [,+)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为.
(1)求该椭圆的方程;
(2)若过点的直线与椭圆相交于, 两点,且点恰为弦的中点,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com