精英家教网 > 高中数学 > 题目详情
17、如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,侧棱AA1⊥BD,点F为DC1的中点.
(I) 证明:OF∥平面BCC1B1
(II)证明:平面DBC1⊥平面ACC1A1
分析:(I)由已知中底面ABCD为菱形,AC∩BD=O,点F为DC1的中点.结合三角形中位线定理我们易证明OF∥BC1,进而结合线面平行的判定定理,我们即可得到OF∥平面BCC1B1
(II)由四边形ABCD为菱形,根据棱形的性质,我们易得对角线垂直,结合侧棱AA1⊥BD,我们根据线面垂直的判定定理得到BD⊥平面ACC1A1,进而根据面面垂直的判定定理得到平面DBC1⊥平面ACC1A1
解答:证明:(I)∵四边形ABCD为菱形且AC∩BD=O,
∴O是BD的中点.(2分)
又点F为DC1的中点,
∴在△DBC1中,OF∥BC1,(4分)
∵OF?平面BCC1B1,BC1?平面BCC1B1
∴OF∥平面BCC1B1.(6分)
(II)∵四边形ABCD为菱形,
∴BD⊥AC,(8分)
又BD⊥AA1,AA1∩AC=A,且AA1,AC?平面ACC1A1,(10分)
∴BD⊥平面ACC1A1,(11分)
∵BD?平面DBC1
∴平面DBC1⊥平面ACC1A1.(13分)
点评:本题考查的知识点是平面与平面垂直的判定及直线与平面平行的判定,熟练掌握线面平行,线面垂直及面面垂直的判定定理及证明步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,且∠A1AD=∠A1AB=60°.
①求证四棱锥A1-ABCD为正四棱锥;
②求侧面A1ABB1与截面B1BDD1的锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.?
(1)证明:BD⊥AA1;?
(2)证明:平面AB1C∥平面DA1C1
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1CC1⊥平面ABCD,∠A1AC=60°
(1)求二面角D-A1A-C的大小.
(2)求点B1到平面A1ADD1的距离
(3)在直线CC1上是否存在P点,使BP∥平面DA1C1,若存在,求出点P的位置;若不存在,说出理由.

查看答案和解析>>

同步练习册答案