精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且定义域为.

(1)求关于的方程上的解;

(2)若在区间上单调减函数,求实数的取值范围;

(3)若关于的方程上有两个不同的实根,求实数的取值范围.

【答案】(1);(2);(3)

【解析】分析:(1)由题意得,讨论两种情况去绝对值解方程即可;

(2)由,函数单减则有,从而得解;

(3)讨论下解方程即可.

详解:(1)令,即有.

时,方程即为,方程无解;

时,方程即为,解得(负值舍去).

综上,方程的解为.

(2)

上单调递减,则

解得,所以实数的取值范围是.

(3)当时,, ①

时,, ②

,则①无解,②的解为,故不成立;

,则①的解为 .

(Ⅰ)当,即时,中

则一个根在内,另一根不在内,设

因为,所以,解得

,则此时

(Ⅱ)当,即时,②在内有不同两根,

,知②必有负数根,所以不成立,

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高二学生小严利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):

女性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

5

10

15

男性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

2

3

10

2

(1)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;

(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”

女性

男性

总计

网购达人

非网购达人

总计

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位: ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布

(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在之外的零件数,求的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中

抽取的第个零件的尺寸,

用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计(精确到0.01).

附:若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x﹣aex(a∈R),x∈R,已知函数y=f(x)有两个零点x1 , x2 , 且x1<x2
(1)求a的取值范围;
(2)证明: 随着a的减小而增大;
(3)证明x1+x2随着a的减小而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数, 函数 .

(1)求函数的单调区间和最小值;

(2)讨论 的大小关系;

(3)求的取值范围,使得 对任意的都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中混装着9个大小相同的球(编号不同),其中5只白球,4只红球,为了把红球与白球区分开来,采取逐只抽取检查,若恰好经过5次抽取检查,正好把所有白球和红球区分出来了,则这样的抽取方式共有__________种(用数字作答) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数,分别从集合中随机取一个数得到数对

1)若,求函数有零点的概率;

2)若 ,求函数在区间上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(

A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

同步练习册答案