【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,,,,,,估计该校学生每周平均体育运动时间超过4小时的概率;
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有的把握认为“该校学生的毎周平均体育运动时间与性别有关”.
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | |||
每周平均体育运动时间超过4小时 | |||
总计 |
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)90位;(2)0.75;(3)联表见解析,有
【解析】
(1)按照女生占学生数的比例,即可求解;
(2)根据直方图得出频率,即可求解;
(3)算出列联表数据,利用独立性检验求解即可.
(1),
∴应收集90位女生的样本数据.
(2)由频率分布直方图可得,
∴该校学生每周平均体育运动时间超过4小时的概率为0.75.
(3)由(2)知,300位学生中有人每周平均体育运动时间超过4小时,75人每周平均体育运动时间不超过4小时,
又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | 45 | 30 | 75 |
每周平均体育运动时间超过4小时 | 165 | 60 | 225 |
总计 | 210 | 90 | 300 |
∴,
∴有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
科目:高中数学 来源: 题型:
【题目】已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”.
(1)判断是否属于集合,并说明理由;
(2)若函数,求满足条件的函数的所有“伴随数对”;
(3)若,都是函数的“伴随数对”,当时,;当时,.求当时,函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | ||||||
频数 | ||||||
支持“生二胎” |
(1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;
年龄不低于岁的人数 | 年龄低于岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆周率是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有个人说“能”,而有个人说“不能”,那么应用你学过的知识可算得圆周率的近似值为()
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.
(1)求曲线的极坐标方程;
(2)在曲线上取两点、于原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在位于城市A南偏西相距100海里的B处,一股台风沿着正东方向袭来,风速为120海里/小时,台风影响的半径为海里
(1)若,求台风影响城市A持续的时间(精确到1分钟)?
(2)若台风影响城市A持续的时间不超过1小时,求的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点的坐标分别为,.三角形的两条边,所在直线的斜率之积是.
(1)求点的轨迹方程;
(2)设直线方程为,直线方程为,直线交于,点,关于轴对称,直线与轴相交于点.若的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.
(1)根据散点图判断:与哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,(说明:的导函数为)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com