精英家教网 > 高中数学 > 题目详情

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有的把握认为该校学生的毎周平均体育运动时间与性别有关”.

男生

女生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

【答案】190位;(20.75;(3)联表见解析,有

【解析】

1)按照女生占学生数的比例,即可求解;

2)根据直方图得出频率,即可求解;

3)算出列联表数据,利用独立性检验求解即可.

1

∴应收集90位女生的样本数据.

2)由频率分布直方图可得

∴该校学生每周平均体育运动时间超过4小时的概率为0.75.

3)由(2)知,300位学生中有人每周平均体育运动时间超过4小时,75人每周平均体育运动时间不超过4小时,

又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:

男生

女生

总计

每周平均体育运动时间不超过4小时

45

30

75

每周平均体育运动时间超过4小时

165

60

225

总计

210

90

300

∴有的把握认为该校学生的每周平均体育运动时间与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”.

(1)判断是否属于集合,并说明理由;

(2)若函数,求满足条件的函数的所有“伴随数对”;

(3)若,都是函数的“伴随数对”,当时,;当时,.求当时,函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持生育二胎人数如下表:

年龄

频数

支持“生二胎”

1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;

年龄不低于岁的人数

年龄低于岁的人数

合计

支持

不支持

合计

2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有个人说“能”,而有个人说“不能”,那么应用你学过的知识可算得圆周率的近似值为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.

(1)求曲线的极坐标方程;

(2)在曲线上取两点于原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在位于城市A南偏西相距100海里的B处,一股台风沿着正东方向袭来,风速为120海里/小时,台风影响的半径为海里

1)若,求台风影响城市A持续的时间(精确到1分钟)?

2)若台风影响城市A持续的时间不超过1小时,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的坐标分别为.三角形的两条边所在直线的斜率之积是.

1)求点的轨迹方程;

2)设直线方程为,直线方程为,直线,点关于轴对称,直线轴相交于点.的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.

1)根据散点图判断:哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?

2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;

3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?

附注:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为(说明:的导函数为)

查看答案和解析>>

同步练习册答案