精英家教网 > 高中数学 > 题目详情
16.执行下面的程序框图,如果输入的t=0.01,则输出的n=(  )
A.$\frac{1}{2}$B.$\frac{1}{2}$C.7D.$-\frac{5}{a}$

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:第一次执行循环体后,S=$\frac{1}{2}$,m=$\frac{1}{4}$,n=1,不满足退出循环的条件;
再次执行循环体后,S=$\frac{1}{4}$,m=$\frac{1}{8}$,n=2,不满足退出循环的条件;
再次执行循环体后,S=$\frac{1}{8}$,m=$\frac{1}{16}$,n=3,不满足退出循环的条件;
再次执行循环体后,S=$\frac{1}{16}$,m=$\frac{1}{32}$,n=4,不满足退出循环的条件;
再次执行循环体后,S=$\frac{1}{32}$,m=$\frac{1}{64}$,n=5,不满足退出循环的条件;
再次执行循环体后,S=$\frac{1}{64}$,m=$\frac{1}{128}$,n=6,不满足退出循环的条件;
再次执行循环体后,S=$\frac{1}{128}$,m=$\frac{1}{256}$,n=7,满足退出循环的条件;
故输出的n值为7,
故选:C

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知焦点在x轴上的双曲线的离心率为$\sqrt{3}$,虚轴长为2$\sqrt{2}$.
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,若OA⊥OB,求m的值.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在圆x2+y2=r2中,AB为直径,C为圆上异于A、B的任意一点,则有kAC•kBC=-1.用类比的方法,对于椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),也能得出类似的结论:若设A为椭圆上的任意一点,点A关于椭圆中心的对称点为B,点C为椭圆上异于A、B的任意一点,则kAC•kBC=$-\frac{b^2}{a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知程序框图如图,若a=0.62,b=30.5,c=log0.55,则输出的数是$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,它是一个算法的流程图,最后输出的k值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图的程序框图,输出的s=(  )
A.10000B.5050C.101D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,已知∠B=30°,∠A0B=90°,点C在AB上,0C⊥AB,用$\overrightarrow{OA}和\overrightarrow{OB}$来表示向量$\overrightarrow{OC}$,则$\overrightarrow{OC}$等于$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$f(x)=2sin({2x+\frac{π}{3}})$,则函数f(x)的最小正周期为π,$f({\frac{π}{6}})$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)在北方工厂使用寿命不低于600小时的样本灯具中随机抽取两个灯具,求至少有一个灯泡使用寿命不低于700小时的概率.

查看答案和解析>>

同步练习册答案