精英家教网 > 高中数学 > 题目详情

【题目】某闯关游戏有这样一个环节:该关卡有一道上了锁的门,要想通过该关卡,要拿到门前密码箱里的钥匙,才能开门过关.但是密码箱需要一个密码才能打开,并且3次密码尝试错误,该密码箱被锁定,从而闯关失败.某人到达该关卡时,已经找到了可能打开密码箱的6个密码(其中只有一个能打开密码箱),他决定从中随机地选择1个密码进行尝试.若密码正确,则通关成功;否则继续尝试,直至密码箱被锁定.
(1)求这个人闯关失败的概率;
(2)设该人尝试密码的次数为X,求X的分布列和数学期望.

【答案】
(1)解:设“密码箱被锁定”的事件为A


(2)解:依题意,X的可能取值为1,2,3,

,\

所以分布列为:

X

1

2

3

p

所以:


【解析】(1)设“密码箱被锁定”的事件为A,利用等可能事件概率计算公式能求出这个人闯关失败的概率.(2)依题意,X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)若曲线C1是一个圆,且点P(1,1)在圆C1外,求实数m的取值范围;

(2)当m=2时,曲线关于直线x+1=0对称的曲线为,设P为平面上的点,满足:存在过P点的无穷多对互相垂直的直线,它们分别与曲线C1和曲线相交,且直线被曲线C1截得的弦长与直线l2被曲线C2截得的弦长总相等.求所有满足条件的点P的坐标;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,EFG分别为AB的中点.

求证:平面平面BEF

若平面,求证:HBC的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.

(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;

(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.

注:方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如下表:

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(2)根据(1)中求出的线性回归方程,若票价定为70元,预测该电影院渴望观影人数.附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:经过点,与x轴正半轴交于点B.

______;将结果直接填写在答题卡的相应位置上

O上是否存在点P,使得的面积为15?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 经计算估计这组数据的中位数;

(2)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,求这个芒果中恰有个在内的概率.

(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b= ,求△ABC面积的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ))的一条对称轴为x= ,一个对称中心为( ,0),在区间[0, ]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.

查看答案和解析>>

同步练习册答案