【题目】已知A是圆锥的顶点,是圆锥底面的直径,C是底面圆周上一点,,与底面所成角的大小为60°,过点A作截面,截去部分后的几何体如图所示.
(1)求异面直线与所成角的大小;
(2)求该几何体的体积.
【答案】(1);(2)
【解析】
(1)设BD的中点为O,连接CO,并延长交弧BD于E,连接EA,ED,
则ED∥BC,则∠ADE是异面直线BC与AD所成的角,在△AED中,结合已知量与余弦定理求出∠ADE.(2)该几何体的体积V(S△BCD+S半圆)AO,由此能求出结果.
(1)设BD的中点为O,连接CO,并延长交弧BD于E,连接EA,ED,
则ED∥BC,则∠ADE是异面直线BC与AD所成的角,
连结OA,
∵A是圆锥的顶点,BD是圆锥底面的直径,,
∵BD=2,∴CO=EO=1,
且OA⊥平面BCD.
∵与底面所成角的大小为60°,
∴AC与底面所成角的大小为,即,
∴AC=AD2,又CO=BO=1,∴BC=DE=1,
在△AED中,cos∠ADE.
∴异面直线PC与SB所成的角为arccos.
(2)该几何体为三棱锥与半个圆锥的组合体,
∵AO,∠BCD=90°,∴CD,
该几何体的体积V(S△BCD+S半圆)AO
.
科目:高中数学 来源: 题型:
【题目】在集合的子集中选出4个不同的子集,需同时满足以下两个条件:
(1),都要选出;(2)对选出的任意两个子集和,必有或;
那么具有_______种不同的选法;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分,某考试每道都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道能排除两个错误选项,另2题只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机挑选一个选项做答,且各题做答互不影响.
(Ⅰ)求该考生本次测验选择题得50分的概率;
(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南角方向,300 km的海面P处,并以20km / h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km,并以10km / h的速度不断增大.
(1) 问10小时后,该台风是否开始侵袭城市A,并说明理由;
(2) 城市A受到该台风侵袭的持续时间为多久?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,满足(…).
(1)若,求的值;
(2)若且,则数列中第几项最小?请说明理由;
(3)若(n=1,2,3,…),求证:“数列为等差数列”的充分必要条件是“数列为等差数列且(n=1,2,3,…)”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与直线有且只有一个交点,点P为椭圆C上任一点,,.若的最小值为.
(1)求椭圆C的标准方程;
(2)设直线与椭圆C交于不同两点A,B,点O为坐标原点,且,当的面积S最大时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com