精英家教网 > 高中数学 > 题目详情

【题目】下列说法中错误的是( )

A.命题“”的否定是“”.

B.中,.

C.已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.

D.从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.

【答案】C

【解析】

选项A根据命题的否定判断,选项B根据正弦定理及两角和的余弦公式判定即可,选项C可根据均值及方差的性质判断,选项D根据互斥事件与对立事件的定义判断即可.

A中根据命题的否定可知,命题“”的否定是“”正确;

B可知,根据正弦定理可得,同理可知由可得,可得

,因为上单调递减,且,所以,故正确;

C中设原数据中方差为,则加入一个新数据3后平均值为,方差为,故不正确;

D中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生,

故互斥且对立正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对任意实数abc,给出下列命题:

①“”是“”的充要条件

②“是无理数”是“a是无理数”的充要条件;

③“”是“”的充分不必要条件

④“”是“”的必要不充分条件,

其中真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

2)估算该市80岁及以上长者占全市户籍人口的百分比;

3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:

①80岁及以上长者每人每月发放生活补贴200元;

②80岁以下老人每人每月发放生活补贴120元;

③不能自理的老人每人每月额外发放生活补贴100元.

利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)如图,在四棱锥中, 平面,底面是菱形, 的交点, 上任意一点.

1)证明:平面平面

2)若平面,并且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于向量的描述正确的是( )

A.若向量都是单位向量,则

B.若向量都是单位向量,则

C.任何非零向量都有唯一的与之共线的单位向量

D.平面内起点相同的所有单位向量的终点共圆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,抛物线 与抛物线 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.

(1)若直线与抛物线交于点 ,且,求

(2)证明: 的面积与四边形的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不共线的向量满足 .

1)若垂直,求的值;

2)当时,若存在两个不同的使得成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,在直线

(1)求数列{an}的通项公式

(2)令,数列的前n项和为

(ⅰ)求

(ⅱ)是否存在整数λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案