如果e1、e2是平面α内两个不共线的向量,那么下列叙述中错误的有
①λe1+μe2(λ、μ∈R)可以表示平面α内的所有向量
②对于平面α中的任一向量a,使a=λe1+μe2的实数λ、μ有无数多对
③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数λ,使λ1e1+μ1e2=λ(λ2e1+μ2e2)
④若实数λ、μ使λe1+μe2=0,则λ=μ=0
A.①②
B.②③
C.③④
D.②
科目:高中数学 来源: 题型:
e1 |
e2 |
A、若实数λ1,λ2使λ1
| ||||||||
B、空间任一向量可以表示为
| ||||||||
C、对实数λ1,λ2,λ1
| ||||||||
D、对平面a中的任一向量
|
查看答案和解析>>
科目:高中数学 来源: 题型:
A.若实数λ1、λ2使λ1e1+λ2e2=0,则λ1=λ2=0
B.空间任一向量a可以表示为a=λ1e1+λ2e2,这里λ1、λ2是实数
C.对实数λ1、λ2,λ1e1+λ2e2不一定在平面α内
D.对平面α中的任一向量a,使a=λ1e1+λ2e2的实数λ1、λ2有无数对
查看答案和解析>>
科目:高中数学 来源: 题型:
A.若实数λ1、λ2使λ1e1+λ2e2=0,则λ1=λ2=0
B.空间任一向量a可以表示为a=λ1e1+λ2e2,这里λ1、λ2是实数
C.对实数λ1、λ2,λ1e1+λ2e2不一定在平面α内
D.对平面α中的任一向量a,使a=λ1e1+λ2e2的实数λ1、λ2有无数对
查看答案和解析>>
科目:高中数学 来源: 题型:
A.若实数m、n使得me1+ne2=0,则m=n=0
B.空间任一向量a可以表示为a=λ1e1+λ2e2,其中λ1、λ2为实数
C.对于实数m、n,me1+ne2不一定在此平面上
D.对于平面内的某一向量a,存在两对以上的实数m、n,使a=me1+ne2
查看答案和解析>>
科目:高中数学 来源: 题型:
A.若实数λ1 、λ2使λ1e1+λ2e2=0,则λ1=λ2=0
B.空间任一向量a都可以表示为a=λ1e1+λ2e2,其中λ1、λ2∈R
C.λ1e1+λ2e2不一定在平面α内,λ1、λ2∈R
D.对于平面α内任一向量a,使a=λ1e1+λ2e2的实数λ1、λ2有无数对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com