精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的焦点为(,0)(0),且椭圆C过点M(4,1),直线l不过点M,且与椭圆交于不同的两点A,B.

(1)求椭圆C的标准方程;

(2)求证:直线MA,MB与x轴总围成一个等腰三角形.

【答案】(1)2)详见解析

【解析】

(1)利用椭圆的定义先求出2a的值,可得出的值,再利用abc之间的关系求出b的值,从而得出椭圆C的标准方程;

(2)将直线l的方程与椭圆C的方程联立,列出韦达定理,利用斜率公式以及韦达定理计算出直线MAMB的斜率互为相反数来证明结论成立.

(1)设椭圆的方程为,则,解得

所以椭圆的标准方程为.

(2)将代入并整理得

.

∵直线与椭圆交于不同的两点,∴,解得

∴直线的斜率存在且不为零.

设直线的斜率分别为,只要证明.

.

故原命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点分别是椭圆 的左、右焦点,过点且与轴垂直的直线与椭圆交于两点.若为锐角,则该椭圆的离心率的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:当时,恒成立;

(2)若函数上只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格p()与时间t()的函数关系是该商品的日销售量Q()与时间t()的函数关系是Q=-t40(0<t≤30tN)

(1)求这种商品的日销售金额的解析式;

(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,画出函数的图象,并指出函数的单调区间;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分组: ,…, ,得到的频率分布直方图如图所示.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;

(Ⅱ)求这名男生身高在以上(含)的人数;

(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.

参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)有极小值.

(1)求实数的取值范围;

(2)若函数时有唯一零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案