精英家教网 > 高中数学 > 题目详情
15.已知定义城为(-1,1)的函数f(x)的导函数为f′(x)=5+cosx,且f(0)=0.如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(  )
A.(0,1)B.(1,$\sqrt{2}$)C.(0,2)D.(0,$\sqrt{2}$)

分析 由题意函数的导函数f′(x)=5+cosx,恒正,故函数是增函数,再由函数是奇函数将不等式f (1-x)+f (1-x2)<0转化为f (1-x)<f (x2-1),由单调性及定义转化为不等式组解之即可.

解答 解:∵函数的导函数f′(x)=5+cosx,恒正,∴函数是增函数,
令f(x)=5x+sinx+c,由f(0)=0,解得:c=0,
故f(x)=5x+sinx,是奇函数,
又函数为定义在(-1,1)上的奇函数,
则不等式f (1-x)+f (1-x2)<0转化为:
f (1-x)<f (x2-1),
∴$\left\{\begin{array}{l}{-1<1-x<1}\\{-1{<x}^{2}-1<1}\\{{x}^{2}-1>1-x}\end{array}\right.$,
解得:x∈(1,$\sqrt{2}$)
故选:B.

点评 本题考查函数的单调性与导数的关系以及抽象不等式的解法,求解本题的关键是根据导数判断出函数的单调性以及利用奇函数的性质与单调性将不等式转化为不等式组,本题求解时易因为忘记定义域的限制导致解题失败,解题时不要忘记验证函数有意义的范围即函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于N,过N作圆O的切线交BC于D,OD交圆O于点M.
(Ⅰ)证明:OD∥AC;
(Ⅱ)证明:$\frac{4DM}{CN}=\frac{DM}{DM+AB}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小韩是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如表所示.
对服务好评对服务不满意合计
对商品好评8040120
对商品不满意701080
合计15050200
(1)是否有99.9%的把握认为商品好评与服务好评有关?请说明理由;
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行观察,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性女性合计
反感10
不反感8
合计30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是$\frac{8}{15}$.
(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.读如图的流程图,若输入的值为-5时,输出的结果是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:方程x2+mx+4=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A(1,2),直线l:x-y-1=0,则点A关于直线l的对称点A'的坐标为(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an}中,a3=9,a6=18,且满足an+2=2an+1-an
(1)求数列{an}的通项公式;
(2)设数列{cn}满足cn=$\frac{2}{{{a_n}+3{n^2}}}$,求{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案