精英家教网 > 高中数学 > 题目详情
已知角α的终边过点P(4,-3)求tanα,cos2α的值.
分析:由角α的终边过点P(4,-3),根据P在第四象限,利用任意角的三角函数定义求出sinα与cosα的值,即可确定出tanα的值,cos2α利用二倍角的余弦函数公式化简,将cosα的值代入计算即可求出值.
解答:解:∵角α的终边过点P(4,-3),且P(4,-3)在第四象限,
∴sinα=-
3
5
,cosα=
4
5

则tanα=
sinα
cosα
=-
3
4
,cos2α=2cos2α-1=2×
16
25
-1=
7
25
点评:此题考查了二倍角的余弦函数公式,任意角的三角函数定义,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角a的终边过点P(-1,2),cosa的值为(  )
A、-
5
5
B、-
5
C、
2
5
5
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角a的终边过点P(1,-2),则sina•cosa的值为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西大学附中高一(下)3月月考数学试卷(Ⅱ)(解析版) 题型:选择题

已知角a的终边过点P(-1,2),cosa的值为( )
A.-
B.-
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市六都中学高一(下)期中数学试卷(解析版) 题型:选择题

已知角a的终边过点P(-1,2),cosa的值为( )
A.-
B.-
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年重庆市高三考前冲刺数学试卷(文科)(解析版) 题型:选择题

已知角a的终边过点P(1,-2),则sina•cosa的值为( )
A.
B.-
C.
D.-

查看答案和解析>>

同步练习册答案