精英家教网 > 高中数学 > 题目详情
已知直线ax+by=0与双曲线
x2
a2
-
y2
b2
=1(0<a<b)交于A,B两点,若A(x1,y1),B(x2,y2)满足|x1-x2|=3
3
,且|AB|=6,则双曲线的离心率为(  )
A、
3
B、3
C、
2
D、2
考点:双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:由题意,|AB|=
1+
a2
b2
|x1-x2|=6,利用|x1-x2|=3
3
,可得
b2
a2
=3,利用e2=1+
b2
a2
,即可得出双曲线的离心率.
解答: 解:由题意,|AB|=
1+
a2
b2
|x1-x2|=6,
∵|x1-x2|=3
3

1+
a2
b2
=
2
3

b2
a2
=3,
∴e2=1+
b2
a2
=4,
∴e=2
故选:D.
点评:本题考查双曲线的离心率,考查弦长公式的运用,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OA
=(2,m),
OB
=(1,
3
),且向量
OA
在向量
OB
方向上的投影为1,则|
AB
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C上任意一点与直线l上任意一点的距离都大于1,则称曲线C“远离”直线l,在下列曲线中,“远离”直线l:y=2x的曲线有
 
.(写出所有符合条件的曲线C的编号)
①曲线C:2x-y+
5
=0②曲线C:y=-x2+2x-
9
4

③曲线C:x2+(y-5)2=1④曲线C:y=ex+1
⑤曲线C:y=lnx-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x3+ax2+bx,(x<1)
-
3
2
clnx,(x≥1)
, 
的图象在点(-1,f(-1))处的切线方程为5x+y+3=0.
(I)求实数a,b的值及函数f(x)在区间[-1,2]上的最大值;
(Ⅱ)曲线y=f(x)上存在两点M、N,使得△MON是以坐标原点O为直角顶点的直角三角形,且斜边MN的中点在y轴上,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个电流瞬时值的函数表达式分别为 I1(t)=sint,I2(t)=sin(t+φ),|φ|<
π
2
,它们合成后的电流瞬时值的函数 I(t)=I1(t)+I2(t)的部分图象如图所示,则 I(t)=
 
,φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的外接圆的圆心为O,半径为4,
OA
+2
AB
+2
AC
=
0
,则向量
CA
CB
方向上的投影为
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{bn}满足b1=1,且bn+1=16bn(n∈N),设数列{
bn
}的前n项和是Tn
(1)比较Tn+12与Tn•Tn+2的大小;
(2)若数列{an} 的前n项和Sn=2n2+2n+2,数列{cn}=an-logdbn(d>0,d≠1),求d的取值范围使得{cn}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
a
•[
b
(
a
c
)-(
a
b
)
c
]
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={
a
|
a
=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量
a1
=(x1,y1
a
2=(x2,y2),“
a
1>>
a
2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:
①若
e
1=(1,0),
e
2=(0,1),
0
=(0,0),则
e
1>>
e
2>>
0

②若
a
1>>
a
2
a
2>>
a
3,则
a
1>>
a
3
③若
a
1>>
a
2,则对于任意
a
∈D,
a
1+
a
>>
a
2+
a

④对于任意向量
a
>>
0
0
=(0,0),若
a
1>>
a
2,则
a
a
1=
a
a
2
其中真命题的序号为
 

查看答案和解析>>

同步练习册答案