精英家教网 > 高中数学 > 题目详情
10.某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(Ⅰ)根据以上数据完成下面2×2列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
(Ⅱ)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(Ⅲ)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635

分析 (1)由题中条件补充2×2列联表中的数据,
(2)利用2×2列联表中的数据,计算出k2,对性别与喜爱运动有关的程度进行判断,
(3)喜欢运动的女志愿者有6人,总数是从 这6人中挑两个人,而有4人会外语,求出满足条件的概率即可.

解答 解:(Ⅰ)

喜爱运动不喜爱运动总计
10616
6814
总计161430
…(2分)
(Ⅱ)由已知数据可求得K2=$\frac{30×(10×8-6×6)2}{(10+6)(6+8)(10+6)(6+8)}$≈1.1575<2.706.
因此,在犯错误的概率不超过0.10的前提下不能判断喜爱运动与性别有关.
…(10分)
(Ⅲ)抽出的志愿者中至少有1人能胜任翻译工作的概率是$P=1-\frac{1}{C_6^2}=1-\frac{1}{15}=\frac{14}{15}$.
…(12分)

点评 本题把概率的求法,列联表,独立性检验等知识有机的结合在一起,是一道综合性题目,但题目难度不大,符合新课标对本部分的要求,是道好题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.函数y=-(n+1)x2+2(1-n)x+1在-1≤x≤1时,y随着x的增大而增大,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥平面ABCD,PA=AB=AD=2,∠BAD=60°.
(Ⅰ)证明:平面PBD⊥平面PAC;
(Ⅱ)求平面APD与平面PBC所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=log2(4x+1)-x,则下面结论正确的是(  )
A.函数y=f(x+2)的对称轴为x=-2B.函数y=f(2x)的对称轴为x=2
C.函数y=f(x+2)的对称中心为(2,0)D.函数y=f(2x)的对称中心为(2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AB为圆O的直径,点C为圆O上的一点,且BC=$\sqrt{3}$AC,点D为线段AB上一点,且AD=$\frac{1}{3}$DB.PD垂直于圆O所在的平面.
(Ⅰ)求证:CD⊥平面PAB;
(Ⅱ)若PD=BD,求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-1.
(1)求证:f(x)≥x;
(2)若存在x0>0,使得对任意的x∈(0,x0),恒有kf(x)<x,求k的范围;
(3)若存在t>0,使得对任意的x∈(0,t),恒有|kf(x)-x|<f2(x),求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方形ABCD与正方形ABEF构成一个$\frac{π}{3}$的二面角,将△BEF绕BE旋转一周.在旋转过程中,(  )
A.直线AC必与平面BEF相交
B.直线BF与直线CD恒成$\frac{π}{4}$角
C.直线BF与平面ABCD所成角的范围是[$\frac{π}{12}$,$\frac{π}{2}$]
D.平面BEF与平面ABCD所成的二面角必不小于$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知变量x与变量y有如表对应数据:
 x 1 2 3 4
 y $\frac{1}{2}$$\frac{3}{2}$ 
且y对x呈线性相关关系,求y对x的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,…,依此拆分法可得1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$+$\frac{1}{182}$,其中m,n∈N*,则m-n=(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

同步练习册答案