ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ2µÄµÈ±ÈÊýÁУ¬ÇÒÂú×ãan+1£½pan£«2n(n¡ÊN*)

(1)Çó³£ÊýpµÄÖµºÍÊýÁÐ{an}µÄͨÏʽ£»

(2)Èô³éÈ¥ÊýÁÐÖеĵÚÒ»Ïî¡¢µÚËÄÏî¡¢µÚÆßÏî¡¢¡­¡­µÚ3n£­2Ï¡­¡­ÓàϵÄÏî°´Ô­À´µÄ˳Ðò×é³ÉÒ»¸öеÄÊýÁÐ{bn}£¬ÊÔд³öÊýÁÐ{bn}µÄͨÏʽ£»

(3)ÔÚ(2)µÄÌõ¼þÏ£¬ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÊÇ·ñ´æÔÚÕýÕûÊýn£¬Ê¹µÃ£½£¿Èô´æÔÚ£¬ÊÔÇóËùÓÐÂú×ãÌõ¼þµÄÕýÕûÊýnµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ3£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬ÆäÇ°nÏîºÍΪSn£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒb1=1£¬bn£¾0£¬ÊýÁÐ{ban}Êǹ«±ÈΪ64µÄµÈ±ÈÊýÁУ®
£¨¢ñ£©Çó{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÖ¤£º
1
S1
+
1
S2
+¡­+
1
Sn
£¼
3
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÊÇÊ×Ïîa1=
1
4
µÄµÈ±ÈÊýÁУ¬ÆäÇ°nÏîºÍSnÖÐS3£¬S4£¬S2³ÉµÈ²îÊýÁУ¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=log
1
2
|an|£¬ÈôTn=
1
b1b2
+
1
b2b3
+¡­+
1
bnbn+1
£¬ÇóÖ¤£º
1
6
¡ÜTn£¼
1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ1µÄµÈ²îÊýÁУ¬ÇÒ¹«²î²»ÎªÁ㣬¶øµÈ±ÈÊýÁÐ{bn}µÄÇ°ÈýÏî·Ö±ðÊÇa1£¬a2£¬a6£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨II£©Èôb1+b2+¡­bk=85£¬ÇóÕýÕûÊýkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬ÓÖÊýÁÐ{bn}µÄÇ°nÏîºÍSn=nan£®
£¨¢ñ£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©Èôcn=
1bn(2an+3)
£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÊÇÊ×Ïîa1=a£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬ÊýÁÐ{bn}Âú×ã2bn=£¨n+1£©an£»
£¨1£©Èôa1¡¢a3¡¢a4³ÉµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èô¶ÔÈÎÒân¡ÊN*¶¼ÓÐbn¡Ýb5³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊýÁÐ{cn}Âú×ã cn+1-cn=(
12
)n(n¡ÊN*)
£¬ÆäÖÐc1=1£¬f£¨n£©=bn+cn£¬µ±a=-20ʱ£¬Çóf£¨n£©µÄ×îСֵ£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸