精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是(  )

A. 命题:存在,使,则非:对任意,都有

B. 如果命题“”与命题“非”都是真命题,那么命题一定是真命题;

C. 命题“若都是偶数,则是偶数”的逆否命题是“若不是偶数,则不是偶数”;

D. 命题“存在”是假命题

【答案】C

【解析】

由命题的否定形式可判断A;由复合命题的真值表可判断B;由命题的逆否命题形式可判断C;由二次方程的解法可判断D.

命题:存在,使,则非:对任意,都有,故A正确;

如果命题“”与命题“非”都是真命题,那么命题为假命题,那么命题一定是真命题,故B正确;

命题“若都是偶数,则是偶数”的逆否命题是“若不是偶数,则不全是偶数”,故C错误;

由于命题的判别式,则方程无实数解,所以不存在,故D正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数:fx)=x2mxnm, nR).

1)若m+n0,解关于x的不等式fxx(结果用含m式子表示);

2)若存在实数m,使得当x[12]时,不等式xfx≤4x恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.镇有基层干部60,镇有基层干部60,镇有基层干部80,每人都走访了若干贫困户,按照分层抽样,三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5,,绘制成如图所示的频率分布直方图.

(1)求这40人中有多少人来自,并估计三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)

(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,三镇的所有基层干部中随机选取3,记这3人中工作出色的人数为,的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较注射两种药物产生的皮肤疱疹的面积,选200只家兔作试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物,另一组注射药物.表1和表2所示的分别是注射药物和药物后皮肤疱疹面积的频数分布(疱疹面积单位:

表1

疱疹面积

频数

30

40

20

10

表2

疱疹面积

频数

10

25

20

30

15

(1)完成图20-3和图20-4所示的分别注射药物后皮肤疱疹面积的频率分布直方图,并求注射药物后疱疹面积的中位数

(2)完成下表所示的列联表,并回答能否有99.9%的把握认为注射药物后的疱疹面积与注射药物的疱疹面积有差异.(的值精确到0.01)

疱疹面积小于

疱疹面积不小于

合计

注射药物A

______

______

注射药物B

______

______

合计

附:

P(

0.100

0.050

0.025

0.010

0.001

k

2.706

3.811

5.021

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f1)=–2f1.5)=0.625f1.25≈–0.984f1.375≈–0.260,关于下一步的说法正确的是( )

A. 已经达到精确度的要求,可以取1.4作为近似值

B. 已经达到精确度的要求,可以取1.375作为近似值

C. 没有达到精确度的要求,应该接着计算f1.4375

D. 没有达到精确度的要求,应该接着计算f1.3125

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0且满足不等式22a+1>25a﹣2

(1)求实数a的取值范围;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,过点作斜率为的直线交椭圆两点,当直线垂直于轴时,

(1)求椭圆的方程

(2)当变化时,在轴上是否存在点,使得是以为底的等腰三角形?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,,点边上,且.

(1)若,求

(2)若,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若,求证:

(1)方程有实根.

(2)若﹣2<<﹣1且设x1,x2是方程f(x)=0的两个实根,则≤|x1﹣x2|<

查看答案和解析>>

同步练习册答案