精英家教网 > 高中数学 > 题目详情

如图,直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=数学公式,AD=BD,EC丄底面ABCD,FD丄底面ABCD 且有EC=FD=2.
(I )求证:AD丄BF;
(II )若线段EC上一点M在平面BDF上的射影恰好是BF的中点N,试求二面角 B-MF-C的余弦值.

(Ⅰ)证明:∵∠BCD=90°,BC=CD=,∴,∠BDC=45°
又由AB∥DC,可知∠ABD=∠BDC=45°,
∵AD=DB,∴∠BAD=∠ABD=45°,
∴∠ADB=90°,∴AD⊥DB.
∵FD丄底面ABCD,∴FD⊥DB.
又FD∩DB=D,∴AD⊥平面FBD,
∴AD⊥BF.
(Ⅱ)解:如图,以点C为原点,直线CD、CB、CE方向为x、y、z轴建系.
可得D
又∵N恰好为BF的中点,∴
设M(0,0,z0),∴
又∵,可得z0=1.
∴M(0,0,1),故M为线段CE的中点.
设平面BMF的一个法向量,且
,由,可得
令y=1,则x=3,z=.得
又∵平面MFC的一个法向量为
==
故所求二面角B-MF-C的余弦值为
分析:(I)利用等腰直角三角形的性质可得∠BDC=45°,根据平行线的性质可得∠ABD=45°,又AD=DB,从而得到∠ADB=90°,可得AD⊥DB;由线面垂直的性质可得FD⊥DB,利用线面垂直的判定定理可得AD⊥平面FDB,即可得到线线垂直;
(II)通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.
点评:熟练掌握等腰直角三角形的性质、平行线的性质、线面垂直的性质、线面垂直的判定定理、线线垂直、通过建立空间直角坐标系利用两个平面的法向量的夹角得出二面角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•宜宾一模)如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的
12
.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=AB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省南昌市高三第二次模拟测试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD =2AE =2AB = 4AF= 4,将四边形EFCD沿EF折起使AE=AD.

(1)求证:AF∥平面CBD;

(2)求平面CBD与平面ABFE夹角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2013年广东省惠州市高考数学一模试卷(文科)(解析版) 题型:解答题

如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:2012年宁夏银川市贺兰一中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=PB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步练习册答案