【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:
失眠 | 不失眠 | 合计 | |
晚上喝绿茶 | 16 | 40 | 56 |
晚上不喝绿茶 | 5 | 39 | 44 |
合计 | 21 | 79 | 100 |
由已知数据可以求得:,则根据下面临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的结论是( )
A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”
B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”
C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”
D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”
科目:高中数学 来源: 题型:
【题目】从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.
(1)求样本容量及各组对应的频率;
(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项为1,且,数列满足,,对任意,都有.
(1)求数列、的通项公式;
(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,则实数m的取值范围是( )
A.(﹣∞,﹣ )
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(0, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】执行如图所示的程序框图后,记“输出是好点”为事件A.
(1)若为区间内的整数值随机数,为区间内的整数值随机数,求事件A发生的概率;
(2)若为区间内的均匀随机数,为区间内的均匀随机数,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的最大值;
(2)若对于任意,均有,求正实数的取值范围;
(3)是否存在实数,使得不等式对于任意恒成立?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com