精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA= acosB. (Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面积.

【答案】解:(Ⅰ)在△ABC中,∵bsinA= acosB, ∴由正弦定理可得 sinBsinA= sinAcosB.
∵sinA≠0,∴sinB= cosB,∴tanB= ,∴B=
(Ⅱ)∵sinC=2sinA,∴c=2a,
由余弦定理b2=a2+c2﹣2accosB,即9=a2+4a2﹣2a2acos
解得a= ,c=2a=2
故△ABC的面积为 acsinB=
【解析】(Ⅰ)在△ABC中,由 bsinA= acosB,利用正弦定理求得tanB的值,可得B的值.(Ⅱ)由条件利用正弦定理得c=2a,再由余弦定理b2=a2+c2﹣2accosB,求得a的值,可得c=2a的值,根据 △ABC的面积为 acsinB,计算求得结果.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,,点在线段上.

(Ⅰ)证明

(Ⅱ)若中点,证明平面

(Ⅲ)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面平面分别为棱的中点.求证:

(1)平面

(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对边分别为a,b,c,已知 . (Ⅰ)若b= ,当△ABC周长取最大值时,求△ABC的面积;
(Ⅱ)设 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考北京文数】已知椭圆C:过点A(2,0),B(0,1)两点.

I)求椭圆C的方程及离心率;

(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届湖南省长沙市高三上学期统一模拟考试文数】已知过的动圆恒与轴相切,设切点为是该圆的直径.

(Ⅰ)求点轨迹的方程;

(Ⅱ)当不在y轴上时,设直线与曲线交于另一点,该曲线在处的切线与直线交于点.求证: 恒为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断f(x)的单调性,说明理由.
(2)解方程f(2x)=f1(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批底部周长属于[80,130](单位:cm)的树木进行研究,从中随机抽出200株树木并测出其底部周长,得到频率分布直方图如图所示,由此估计,这批树木的底部周长的众数是cm,中位数是cm,平均数是cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆 相切,且与圆 相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点, 为坐标原点,过点的平行线交曲线, 两个不同的点.

(Ⅰ)求曲线的方程;

(Ⅱ)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(Ⅲ)记的面积为 的面积为,令,求的最大值.

查看答案和解析>>

同步练习册答案