精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,若E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.

【答案】证明:(Ⅰ)连接AC,则F是AC的中点,在△CPA中,EF∥PA且PA平面PAD,EF平面PAD,
∴EF∥平面PAD
(Ⅱ)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,
∴CD⊥PA
又PA=PD= AD,
所以△PAD是等腰直角三角形,且∠APD= ,即PA⊥PD
而CD∩PD=D,
∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC
【解析】对于(Ⅰ),要证EF∥平面PAD,只需证明EF平行于平面PAD内的一条直线即可,而E、F分别为PC、BD的中点,所以连接AC,EF为中位线,从而得证;
对于(Ⅱ)要证明EF⊥平面PDC,由第一问的结论,EF∥PA,只需证PA⊥平面PDC即可,已知PA=PD= AD,可得PA⊥PD,只需再证明PA⊥CD,而这需要再证明CD⊥平面PAD,
由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性质可以证明,从而得证.

【考点精析】关于本题考查的空间中直线与平面之间的位置关系,需要了解直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近几年出现各种食品问题,食品添加剂引起血脂增高、血压增高、血糖增高等疾病为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:

患三高疾病

不患三高疾病

合计

6

30

合计

36

1请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2为了研究三高疾病是否与性别有关,请计算出统计量,并说明你有多大的把握认为三高疾病与性别有关?

下面的临界值表供参考:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

参考公式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=2,AA1=6.若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定义域与最小正周期;
(2)讨论f(x)在区间[﹣ ]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,分别是椭圆的左、右焦点.

(1)若点是第一象限内椭圆上的一点, ,求点的坐标;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 当时,解关于的不等式

(2) 若对任意时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(Ⅰ)求进入决赛的人数;
(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记X表示两人中进入决赛的人数,求X的分布列及数学期望;
(Ⅲ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

同步练习册答案