精英家教网 > 高中数学 > 题目详情
已知点A(-2,3),点B(3,2),过点P(0,-2)的直线L与线段AB有公共点,若点Q(m,3)在直线L上,则实数m的取值范围为
 
考点:直线的斜率
专题:直线与圆
分析:由题意可得直线L的斜率k=
5
m
,再根据
5
m
≥KPB,或
5
m
≤KPA
解答: 解:由题意可得直线L的斜率k=
3+2
m-0
=
5
m
,且 
5
m
≥KPB=
2+2
3-0
,或
5
m
≤KPA=
3+2
-2-0

求得-2≤m<0,或0<m≤
15
4

故答案为:{m|-2≤m<0,或0<m≤
15
4
}.
点评:本题主要考查直线的斜率公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn
(1)a1=-4,a8=-18,n=8;
(2)a1=14.5,d=0.7,an=32.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+
3
bc,求:
(1)2sinBcosC-sin(B-C)的值;
(2)若a=2,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E1、F1分别是A1B1、C1D1上的点,并且4B1E1=4D1F1=A1B1,则BE1与DF1所成角的余弦值是(  )
A、
3
2
B、
1
2
C、
8
17
D、
15
17

查看答案和解析>>

科目:高中数学 来源: 题型:

P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1为它的一个焦点,求证:以PF1为直径的圆与以长轴为直径的圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、M三点不共线,对于平面ABM外任意一点O,若
OB
+
OM
=3
OP
-
OA
,则点P与A、B、M(  )
A、共面B、共线
C、不共面D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,则该几何体的表面积是(  )
A、98+3
5
B、98+6
5
C、88+3
5
D、88+8
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过定点M(0,4)的直线l与⊙C:(x+1)2+(y-3)2=4交于A、B两点.
(1)当弦AB最短时,求直线l的方程;
(2)若|
CA
+
CB
|=|
CA
-
CB
|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若2x-3y+z=3,则x2+(y-1)2+z2的最小值为
 

查看答案和解析>>

同步练习册答案