精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(﹣
C.(﹣∞,
D.(﹣∞,

【答案】C
【解析】解:由题意,存在x<0,

使f(x)﹣g(﹣x)=0,

即ex ﹣ln(﹣x+a)=0在(﹣∞,0)上有解,

令m(x)=ex ﹣ln(﹣x+a),

则m(x)=ex ﹣ln(﹣x+a)在其定义域上是增函数,

且x→﹣∞时,m(x)<0,

若a≤0时,x→a时,m(x)>0,

故ex ﹣ln(﹣x+a)=0在(﹣∞,0)上有解,

若a>0时,

则ex ﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为

e0 ﹣ln(a)>0,

即lna<

故0<a<

综上所述,a∈(﹣∞, ).

故选:C

【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1,点M与曲线C的焦点不重合,若点M关于曲线C的两个焦点的对称点分别为A,B,M,N是坐标平面内的两点,且线段MN的中点P恰好在双曲线C上,则|AN﹣BN|=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).
(1)若m=2,且p∧q为真,求实数x的取值范围;
(2)若p是q充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,
(1)求A的大小;
(2)若 ,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆E:(x+ 2+y2=16,点F( ,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.

(1)求动点Q的轨迹Γ的方程;
(2)设直线l与(1)中轨迹Γ相交于A,B两点,直线AO,l,OB的斜率分别为k1 , k,k2(其中k>0),若k1 , k,k2恰好构成公比不为1的等比数列,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P﹣ABCD的体积.
(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;
(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于(
A.11或18
B.11
C.18
D.17或18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中:
(Ⅰ)求证:AC∥平面A1BC1
(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

2

﹣2

0


(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

同步练习册答案