分析 (1)利用同角三角函数基本关系式化简已知可得$\frac{sinAsinC}{cosAcosC}$=$\frac{1+2cosAcosC}{2cosAcosC}$,结合三角形内角和定理可得cosB=$\frac{1}{2}$,结合范围B∈(0,π),即可求B的值.
(2)利用向量数量积的运算可得ac=b2,又由余弦定理可得:b2=a2+c2-ac,从而解得a=c,结合B=$\frac{π}{3}$,可得三角形为等边三角形.
解答 解:(1)∵tanAtanC=$\frac{1}{2cosAcosC}$+1.
∴$\frac{sinAsinC}{cosAcosC}$=$\frac{1+2cosAcosC}{2cosAcosC}$,可得:-2cos(A+C)=1,
∴cosB=-cos(A+C)=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
(2)∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{1}{2}$b2,B=$\frac{π}{3}$.
∴accos$\frac{π}{3}$=$\frac{1}{2}$b2,解得:ac=b2①,
又∵由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac②,
∴由①②可得:a=c,结合B=$\frac{π}{3}$,可得三角形为等边三角形.
点评 本题主要考查了同角三角函数基本关系式,余弦定理,三角形内角和定理,向量数量积的运算,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | (0,1] | C. | (-1,1] | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com