精英家教网 > 高中数学 > 题目详情
在等差数列和等比数列中,项和.
(1)若,求实数的值;
(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;
(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.
(1);(2)存在,;(3)存在,(答案不唯一).

试题分析:(1)数列是等比数列,其前和的极限存在,因此有公式满足,且极限为;(2)由于是正整数,因此可对按奇偶来分类讨论,因此当为奇数时,等比数列的公比不是整数,是分数,从而数列从第三项开始每一项都不是整数,都不在数列中,而当为偶数时,数列的所有项都在中,设,则展开有
,这里用到了二项式定理,,结论为真;(3)存在时只要找一个,首先不能为整数,下面我们只要写两数列的通项公式,让,取特殊值求出,如取,可得,此时在数列中,由于是无理数,会发现数列除第一项以外都是无理数,而是整数,不在数列中,命题得证,(如取其它的又可得到另外的值).
试题解析:(1)对等比数列,公比
因为,所以.     2分
解方程,      4分

因为,所以.     6分
(2)当取偶数时,中所有项都是中的项.        8分
证: 由题意:均在数列中,
时,
 
说明的第n项是中的第项.        10分
取奇数时,因为不是整数,
所以数列的所有项都不在数列中。    12分
综上,所有的符合题意的
(3)由题意,因为中,所以中至少存在一项中,另一项不在中。                    14分

,即.
4,得(舍负值)。此时。           16分
时,,对任意.    18分
综上,取
(此问答案不唯一,请参照给分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知集合,,设是等差数列的前项和,若的任一项,且首项中的最大数, .
(1)求数列的通项公式;
(2)若数列满足,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,a1=1,a2=2,且an+2an=1+(-1)n(n∈N*),则S10=(  ).
A.2100 B.2600C.2800 D.3100

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等差数列{an}中,给出以下结论:
①恒有:a2a8a10
②数列{an}的前n项和公式不可能是Snn
③若mnlk∈N*,则“mnlk”是“amanalak”成立的充要条件;
④若a1=12,S6S11,则必有a9=0,其中正确的是(  ).
A.①②③B.②③C.②④D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列满足:当)时,是数列 的前项和,定义集合的整数倍,,且表示集合中元素的个数,则            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足a1=3,an+1anp·3n(n∈N*p为常数),a1a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn,证明:bn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等差数列{an}中,a1=3,a4=2,则a4a7+…+a3n+1等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}为等差数列,且a1a7a13=4π,则tan(a2a12)= (  ).
A.-B.
C.±D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列为其前项和,若,且,则(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案