精英家教网 > 高中数学 > 题目详情
对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于0,则x的取值范围是(  )
A、{x|1<x<3}B、{x|x<1或x>3}C、{x|1<x<2}D、{x|x<1或x>2}
分析:把二次函数的恒成立问题转化为y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.
解答:解:原题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,
只需
(-1)(x-2)+x2-4x+4>0
1×(x-2)+x2-4x+4>0
?
x>3或x<2
x>2或x<1
?x<1或x>3.
故选B.
点评:本题的做题方法的好处在于避免了讨论二次函数的对称轴和变量间的大小关系,而一次函数在闭区间上的最值一定在端点处取得,所以就把解题过程简单化了.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是
(-∞?1)∪(3,+∞)
(-∞?1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源:2011年安徽省巢湖市庐江县乐桥中学高三第一次月考数学试卷(理科)(解析版) 题型:填空题

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2007年江苏省南通市数学学科基地高考数学回扣课本基础训练试卷(解析版) 题型:解答题

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是   

查看答案和解析>>

同步练习册答案