【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N.
(1)写出C的平面直角坐标系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
【答案】(1);(2).
【解析】
试题分析:(Ⅰ)利用将曲线 极坐标方程化为直角坐标方程y2=2ax(a>0);利用加减消元消去参数将直线的参数方程化为普通方程x-y-2=0. (Ⅱ)利用直线参数方程几何意义,将直线l的参数方程代入C的直角坐标方程所得关于参数的方程,其中|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.再根据成等比数列列等量关系解得a=1.
试题解析:(Ⅰ)曲线C的直角坐标方程为y2=2ax(a>0);
直线l的普通方程为x-y-2=0. 4分
(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0 (*) △=8a(4+a)>0.
设点M,N分别对应参数t1,t2,恰为上述方程的根.则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.
由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0,则有
(4+a)2-5(4+a)=0,得a=1,或a=-4.因为a>0,所以a=1. 10分
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,PA⊥平面ABC,△ABC是边长为2的等边三角形,且三棱锥P﹣ABC的外接球表面积为,则直线PC与平面PAB所成角的正切值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,准线为,与轴的交点为,点在抛物线上,过点作于点,如图1.已知,且四边形的面积为.
(1)求抛物线的方程;
(2)若正方形的三个顶点,,都在抛物线上(如图2),求正方形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数对于任意的,都有,当时,,且.
(1)求,的值;
(2)当时,求函数的最大值和最小值;
(3)设函数,判断函数g(x) 最多有几个零点,并求出此时实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点.
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机中的“运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的朋友圈里有大量好友参与了“运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如下表所示:
男 | 0 | 2 | 4 | 7 | 2 |
女 | 1 | 3 | 7 | 3 | 1 |
(Ⅰ)以样本估计总体,视样本频率为概率,在小明朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有名,求的分布列和数学期望;
(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的列联表,并据此判断能否有以上的把握认为“评定类型”与“性别”有关?
积极型 | 消极型 | 总计 | |
男 | |||
女 | |||
总计 |
附:.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数的不足近似值和过剩近似值分别为和,则是的更为精确的近似值.
我们知道,我国早在《周髀算经》中就有“周三径一”的古率记载,《隋书律历志》有如下记载:“南徐州从事史祖冲之更开密法,以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,肭数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二”,这一记录指出了祖冲之关于圆周率的两大贡献:其一是求得圆周率;其二是得到的两个近似分数即:约率为22/7,密率为355/113,他算出的的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界纪录一千多年,他对的研究真可谓“运筹于帷幄之中,决胜于千年之外”,祖冲之是我国古代最有影响的数学家之一,莫斯科大学走廊里有其塑像,1959年10月,原苏联通过“月球3”号卫星首次拍下月球背面照片后,就以祖冲之命名一个环形山,其月面坐标是:东经148度,北纬17度.
纵横古今,关于值的研究,经历了古代试验法时期、几何法时期、分析法时期、蒲丰或然性试验方法时期、计算机时期,己知,试以上述的不足近似值和过剩近似值为依据,那么使用两次“调日法”后可得的近似分数为____________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,点在直线上,其中.
(1)令,求证数列是等比数列;
(2)求数列的通项;
(3)设、分别为数列、的前项和是否存在实数,使得数列为等差数列?若存在,试求出,若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题说法中正确的是
A. 对于实数,“”是或的充分不必要条件
B. 已知都是整数,则命题“若,则不都是奇数”是假命题
C. “若,则关于的方程有实根”的逆否命题为假命题
D. 命题“全等三角形的面积相等”的否命题为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com