精英家教网 > 高中数学 > 题目详情
如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则对函数y=f(x)有下列判断:
①函数y=f(x)是偶函数;
②对任意的x∈R,都有f(x+2)=f(x-2);
③函数y=f(x)在区间[2,3]上单调递减.
其中判断正确的序号是
 
考点:函数的图象,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:根据正方形的运动,得到点P的轨迹方程,然后根据函数的图象和性质分别进行判断即可.
解答: 解:当-2≤x≤-1,P的轨迹是以A为圆心,半径为1的
1
4
圆,
当-1≤x≤1时,P的轨迹是以B为圆心,半径为
2
1
4
圆,
当1≤x≤2时,P的轨迹是以C为圆心,半径为1的
1
4
圆,
当3≤x≤4时,P的轨迹是以A为圆心,半径为1的
1
4
圆,
∴函数的周期是4.
因此最终构成图象如下:

①根据图象的对称性可知函数y=f(x)是偶函数,∴①正确.
②由图象即分析可知函数的周期是4.∴②正确.
③函数y=f(x)在区间[2,3]上单调递增,∴③错误.
故答案为:①②.
点评:本题考查的知识点是函数图象的变化与对应函数解析式的问题,其中根据已知画出正方形转动过程中的一个周期内的图象,利用数形结合的思想对本题进行分析是解答本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin(
π
2
+θ)+cos(
π
2
-θ)=
1
5
(θ∈(0,π)),则tanθ=(  )
A、-
4
3
B、
4
3
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2-3x-4的定义域为[0,
3
2
]
,则值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为
2
,则a2+b2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-1,x∈[-2,2],
(1)当a=1时,求f(x)的最大与最小值;  
(2)求实数a的取值范围,使函数f(x)在[-2,2]上不是单调函数;    
(3)求函数f(x)的最大值g(a),并求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=-x2+2ax与g(x)=
a
x+1
在区间[1,2]上都是减函数,则a的范围(  )
A、(-1,0)∪(0,1)
B、(-1,0)∪( 0,1]
C、(0,1)
D、( 0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sinB,2-cos2B),n=(1+sinB,-1),且m⊥n.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC不是钝角三角形,且a=
3
,b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数:①y=3-x;②y=
1
x2+1
;③y=x2+2x-10;.其中值域为R的函数个数有(  )
A、1个B、2个C、3个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出的b的值为127,则图中判断框内①处应填的整数为
 

查看答案和解析>>

同步练习册答案