精英家教网 > 高中数学 > 题目详情

【题目】某种商品在天内每克的销售价格()与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量()与时间()之间的函数关系如下表所示:

5

15

20

30

销售量

35

25

20

10

(1)根据提供的图象,写出该商品每克销售的价格()与时间的函数关系式;

(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;

(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.

(注:日销售金额=每克的销售价格×日销售量)

【答案】(1);(2);(3)25.

【解析】

(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式.
(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式
(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案.

(1)由图可知

所在直线方程为,把代入

,所以.

由两点式得所在的直线方程为

整理得,,所以

(2)由题意,设,把两点代入得

解得所以

把点代入也适合,即对应的四点都在同一条直线上,

所以.

(本题若把四点中的任意两点代入中求出,再验证也可以)

(3)设日销售金额为,依题意得,

,配方整理得

时,在区间上的最大值为900

时,,配方整理得

所以当时,在区间上的最大值为1125.

综上可知日销售金额最大值为1125元,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x1)f(x)=-2x1f(2)15.

(1)求函数f(x)的解析式;

(2) g(x)(22m)xf(x)

若函数g(x)x[02]上是单调函数求实数m的取值范围;

求函数g(x)x[02]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将两块三角板按图甲方式拼好,其中

,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.

1)求证:

2)求证: 为线段中点;

3)求二面角的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ,求 的值;
(2)已知函数f(x)=2( + ﹣2m2﹣1,若函数f(x)在[0, ]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足a7=a6+2a5 , 若存在两项am , an使得 ,则 的最小值为(
A.
B.
C.
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称上的高调函数. 如果定义域为的函数是奇函数,当时,,且上的8高调函数,那么实数的取值范围为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人。

)求第七组的频率;

)估计该校的名男生的身高的中位数以及身高在以上(含)的人数;

)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量 ,两组向量 均由2个 和3个 排列而成,记S= ,Smin表示S所有可能取值中的最小值,则下列命题中
1)S有5个不同的值;(2)若 则Smin与| |无关;(3)若 则Smin与| |无关;(4)若| |>4| |,则Smin>0;(5)若| |=2| |,Smin=8| |2 , 则 的夹角为 .正确的是(
A.(1)(2)
B.(2)(4)
C.(3)(5)
D.(1)(4)

查看答案和解析>>

同步练习册答案