精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=3x2-6x-5.
(Ⅰ)求不等式 f(x)>4的解集;
(Ⅱ)若关于x的不等式f(x)<x2-(2a+6)x+a在x∈[1,3]上恒成立,求实数a的取值范围;
(Ⅲ)设函数g(x)=f(x)-2x2+mx+5-6m(m∈R),记区间D=(1-m,m+15),若不等式g(x)<0的解集为M,且D∩M=∅,求实数m的取值范围.
分析:(I)根据已知中函数解析式,化简不等式 f(x)>4,进而根据二次不等式的解法,可得不等式 f(x)>4的解集;
(Ⅱ)根据已知中函数解析式,化简不等式f(x)<x2-(2a+6)x+a,根据二次函数的图象及性质,可得函数在区间[1,3]上恒成立,即函数在区间两端点的函数值均为负,构造不等式组,可得实数a的取值范围;
(Ⅲ)根据已知中函数解析式,化简不等式g(x)<0,结合D=(1-m,m+15),且D∩M=∅,分类讨论求出满足条件的实数m的取值范围.
解答:解:(I)不等式 f(x)>4
即3x2-6x-9>0
解得x>3,或x<-1
∴不等式 f(x)>4的解集为(-∞,-1)∪(3,+∞)
(II)若不等式f(x)<x2-(2a+6)x+a在x∈[1,3]上恒成立,
即不等式2x2+2ax-5-a<0在x∈[1,3]上恒成立,
令h(x)=2x2+2ax-5-a
h(1)<0
h(3)<0
,即
a-3<0
5a+13<0

解得a<-
13
5

(III)∵g(x)=f(x)-2x2+mx+5-6m=x2+(m-6)x-6m
∴当g(x)=0时,x=6,或x=-m
当-m>6,即m<-6时,不等式g(x)<0的解集M=(6,-m)
∵D=(1-m,m+15),且D∩M=∅,
1-m<m+15
-m≤1-m,或m+15≤6

∴-7<m<-6
当-m=6,即m=-6时,不等式g(x)<0的解集M=∅
满足D∩M=∅,
当-m<6,即m>-6时,不等式g(x)<0的解集M=(-m,6)
∵D=(1-m,m+15),且D∩M=∅,
1-m<m+15
6≤1-m,或m+15≤-m

∴-6<m≤-5
综上可得实数m的取值范围为-7<m≤-5
点评:本题考查的知识点是函数的恒成立问题,一元二次不等式的解法,函数的交集运算,其中熟练掌握二次函数的图象和性质并能用之解答一元二次不等式问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案