精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .
(1)当 时,求函数 的单调区间和极值;
(2)求函数 在区间 上的最小值.

【答案】
(1)解: 当 时,

,

,解得 ,所以函数 的单调递增区间是 .

,解得 ,

所以函数 的单调递减区间是 .

所以函数 的极小值为 无极大值


(2)解: 当 时, ,

,当 时, ,此时 恒成立,

所以 上单调递增,所以 .当 时,

,令 ,即 ,

解得

,即 ,解得 .

①当 时,即当 时, 恒成立,

区间单调递减, 所以 .

②当 时,即当 时, 在区间 上单调递减,

在区间 上单调递增, 所以 .

③当 ,即 时, 恒成立,

在区间 单调递增,所以 .

综上所述,当 时, ,

时,

时,


【解析】(1)首先求出原函数的导函数,利用导函数在不同区间的正负情况得出原函数的单调性进而得到其极值。(2)先求出函数的导函数,再通过对a分情况讨论确定导函数的正负进而得到原函数f(x)在指定区间上的单调性,进而得到函数的最小值。
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生:
(1)得40分的概率;
(2)得多少分的可能性最大?
(3)所得分数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(2x+φ)(|φ< |)的图象向左平移 个单位后关于原点对称,求函数f(x)在[0, ]上的最小值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当时,.现有如下命题:

设函数的定义域为,则的充要条件是

函数的充要条件是有最大值和最小值;

若函数的定义域相同,且,则

若函数)有最大值,则.

其中的真命题有 .(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象上存在不同的两点 ,使得曲线 在这两点处的切线重合,则实数 的取值范围是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:


(1)求出表中M,P及图中 的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[10,15]内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,已知曲线 为参数),以平面直角坐标系 的原点 为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线 .
(1)将曲线 上的所有点的横坐标、纵坐标分别伸长为原来的 、2倍后得到曲线 ,试写出直线 的直角坐标方程和曲线 的参数方程;
(2)在曲线 上求一点 ,使点 到直线 的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,焦点在x轴上的椭圆,离心率 ,且椭圆过点 . (Ⅰ)求椭圆的方程;
(Ⅱ)椭圆左,右焦点分别为F1 , F2 , 过F2的直线l与椭圆交于不同的两点A、B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为 ,则下列命题是真命题的是(
A.p∧q
B.(p)∧q
C.p∧(q)
D.q

查看答案和解析>>

同步练习册答案