精英家教网 > 高中数学 > 题目详情
在△ABC中,a2+c2-b2=
2
3
3
acsinB.
(Ⅰ)求B的大小;
(Ⅱ)若a=4,且
π
6
≤A≤
π
3
,求边c的取值范围.
考点:余弦定理的应用
专题:计算题,解三角形
分析:(1)利用余弦定理列出关系式,与已知等式结合整理后求出tanB的值,根据B为三角形内角,利用特殊角的三角函数值求出B的度数;
(2)利用正弦定理表示出c,根据A的范围利用正弦函数值域即可确定出c的范围.
解答: 解:(1)由余弦定理,可得a2+c2-b2=2accosB …(2分)
又a2+c2-b2=
2
3
3
acsinB…(3分)
所以可得tanB=
3
…(5分)
又∵0<B<π,
∴B=
π
3
;…(7分)
(2)由正弦定理,
c
sin(A+B)
=
a
sinA
…(9分)
得c=
4sin(A+
π
3
)
sinA
=2+
2
3
tanA
…(11分)
π
6
≤A≤
π
3
,故tanA∈[
3
3
3
]…(12分)
∴c∈[4,8]…(13分)
点评:此题考查了正弦、余弦定理,以及正弦函数的定义域与值域,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x|x|+x3+2在[-2014,2014]上的最大值与最小值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a4,2=8.若ai,j=210,则i、j的值分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)
1
5
(lg32+log416+6lg
1
2
)+
1
5
lg
1
5

(2)已知x+x-1=3,求
x3+x-3
x2+x-2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的
 
条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出一种填空.)

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2≥5x的解集是(  )
A、[0,5]
B、(-∞,0]∪[5,+∞)
C、(-∞,0]
D、[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A、y=log2x(x>0)
B、y=x3-x(x∈R)
C、y=3x(x∈R)
D、y=-
1
x
  (x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=2,an+1=
1+an
1-an
(n∈N*),则该数列的前2015项的乘积a1•a2•a3•…a2015=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中.已知向量
a
b
,|
a
|=|
b
|=1,
a
b
=0,点Q满足
OQ
=2
2
a
+
b
),曲线C={P|
OP
=
a
cosθ+
b
sinθ,0≤θ≤2π},区域Ω={P|0<r≤|
PQ
|≤R,r<R}.若C∩Ω为两段分离的曲线,则(  )
A、3<r<5<R
B、3<r<5≤R
C、0<r≤3<R<5
D、3<r<R<5

查看答案和解析>>

同步练习册答案