精英家教网 > 高中数学 > 题目详情
2.如果sinθ<0,cosθ>0,则角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 分别由sinθ<0,cosθ>0求出θ的范围,取交集得答案.

解答 解:∵sinθ<0,∴θ为第三、第四或终边落在y轴负半轴上的角;
又∵cosθ>0,∴θ为第一、第四或x轴正半轴上的角,
∴取交集可得角θ所在的象限是第四象限.
故选:D.

点评 本题考查三角函数值的符号,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.下列式子中:①lg(3+2$\sqrt{2}$)-lg(3-2$\sqrt{2}$)=0;
②lg(10+$\sqrt{99}$)•lg(10-$\sqrt{99}$)=0;
③log${\;}_{\sqrt{n+1}-\sqrt{n}}$($\sqrt{n+1}$+$\sqrt{n}$)=-1(n∈N*
④$\frac{lga}{lgb}$=lg(a-b).
其中正确的有③. (填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x_i}$=80,$\sum_{i=1}^{10}{y_i}$=20,$\sum_{i=1}^{10}{{x_i}{y_i}}$=184,$\sum_{i=1}^{10}{x_i^2}$=720.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的有(  )
①方向相同的向量叫相等向量;
②零向量的长度为0;
③共线向量是在同一条直线上的向量;
④零向量是没有方向的向量;
⑤共线向量不一定相等;
⑥平行向量方向相同.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和Sn=n2,则a5=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α的终边所在的直线过点P(4,-3),则cosα的值为(  )
A.4B.-3C.±$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出四个命题:(1)若sin2A=sin2B,则△ABC为等腰三角形;(2)若sinA=cosB,则△ABC为直角三角形;(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形,以上正确命题的是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=ln(x2-x)的定义域是(  )
A.(-∞,0]∪[1,+∞)B.(0,1)C.[0,1]D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,三边a,b,c所对角依次为A,B,C,则$\frac{5a}{sinA}$-$\frac{3b}{sinB}$-$\frac{2c}{sinC}$=0.

查看答案和解析>>

同步练习册答案