精英家教网 > 高中数学 > 题目详情
18.抛物线y2=2px(p>0)的焦点为F,点A,B在抛物线上,且满足∠AFB=$\frac{2π}{3}$,过弦AB的中点P作抛物线准线的垂线PM,垂足为M,则$\frac{|PM|}{|AB|}$的最大值为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

分析 设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MP|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.

解答 解:设|AF|=a,|BF|=b,
连接AF、BF,
由抛物线定义,得|AF|=|AQ|,
|BF|=|BP'|
在梯形ABP'Q中,
2|MP|=|AQ|+|BP'|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°
=a2+b2+ab,
配方得,|AB|2=(a+b)2-ab,
又∵ab≤($\frac{a+b}{2}$)2
∴(a+b)2-ab≥(a+b)2-$\frac{1}{4}$(a+b)2=$\frac{3}{4}$(a+b)2
得到|AB|≥$\frac{\sqrt{3}}{2}$(a+b).
∴$\frac{|PM|}{|AB|}$≤$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{3}}{2}(a+b)}$=$\frac{\sqrt{3}}{3}$,
即$\frac{|PM|}{|AB|}$的最大值为$\frac{\sqrt{3}}{3}$.
故选:A.

点评 本题在抛物线中,利用定义和余弦定理求$\frac{|PM|}{|AB|}$的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,顶点A(-2,1),点B在直线l:x+y-3=0上,点C在x轴上,则△ABC周长的最小值2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=cos2x的图象向左平移$\frac{π}{3}$个单位得到函数g(x)的图象,则函数g(x)(  )
A.一个对称中心是(-$\frac{π}{3}$,0)B.一条对称轴方程为x=$\frac{π}{3}$
C.在区间[-$\frac{π}{3}$,0]上单调递减D.在区间[0,$\frac{π}{3}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下面命题:
①幂函数图象不过第四象限;
②y=x0图象是一条直线;
③若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
④若函数$y=\frac{1}{x}$的定义域是{x|x>2},则它的值域是$\left\{{y\left|{y<\frac{1}{2}}\right.}\right\}$;
⑤若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2},
其中不正确命题的序号是②③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应是从集合S到T的映射的是(  )
A.S=N,T={-1,1},对应法则是n→(-1)n,n∈S
B.S={x|x∈R},T={y|y∈R},对应法则是x→y=$\frac{1+x}{1-x}$
C.S={0,1,2,5},T={1,$\frac{1}{2}$,$\frac{1}{5}$},对应法则是取倒数
D.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},对应法则是开平方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P(x,y)满足$\sqrt{(x-2)^{2}+(y-1)^{2}}$=$\frac{|3x+4y+12|}{5}$,则点P的轨迹是(  )
A.双曲线B.抛物线C.两条相交直线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有可围36m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a=2,b=3,A=$\frac{π}{6}$,则cosB的值为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{5}$C.±$\frac{\sqrt{7}}{4}$D.±$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=4+tcosa}\\{y=2+tcosa}\end{array}\right.$ (t为参数,a为直线l的倾斜角),曲线C的极坐标方程为ρ=4cosθ
(1)写出曲线C的直角坐标方程
(2)直线l与曲线C交于不同的两点M,N,设P(4,2).求|PM|+|PN|的取值范围.

查看答案和解析>>

同步练习册答案