精英家教网 > 高中数学 > 题目详情
(2009•孝感模拟)设A,B分别为椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的左、右顶点,椭圆长半轴的长等于焦距,且x=为它的右准线.
(1)求椭圆的方程;
(2)设P为椭圆上不同于A,的一个动点,直线PA,P与椭圆右准线相交于M,两点,证明:MN为直径的圆必过椭圆外的一个定点.
分析:(1)根据题意:“椭圆长半轴的长等于焦距,且x=4为它的右准线”可求得a和c的关系,进而根据准线方程求得a和c,则b可得,进而求得椭圆的方程.
(2)根据(1)中的椭圆方程可求得A,B的坐标,利用参数设出点P的坐标,由A、P、M三点共线或B、P、N三点共线可以求得点M,N的坐标,进而表示出 以MN为直径的圆的方程,从而得出以MN为直径的圆必过椭圆外的一个定点.
解答:解:(1)由题意,知a=2c,
a2
c
=4,解得a=2,c=1,∴b=
3
,故椭圆方程为
x2
4
+
y2
3
=1
 …(5分)
(2)设P(2cosθ,
3
sinθ),M(4,m),N(4,n),则A(-2,0),B(2,0),
由A、P、M三点共线,得m=
3
3
sinθ
1+cosθ
     …(7分)
由B、P、N三点共线,得n=
3
sinθ
cosθ-1
,…(9分)
以MN为直径的圆的方程为(x-4)(x-4)+(y-
3
3
sinθ
1+cosθ
)(y-
3
sinθ
cosθ-1
)=0,
整理得:(x-4)2+y2-(
3
3
sinθ
1+cosθ
+
3
sinθ
cosθ-1
)y-9=0      …(12分)
(x-4)2+y2-9=0
y=0
x=1
y=0
(舍去)或
x=7
y=0

∴MN为直径的圆必过椭圆外的一个定点(7,0),命题成立.…(13分)
【由对称性先猜出在x轴上存在符合要求的定点,再求出该点,结果正确的,给(13分).】
点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•孝感模拟)设全集U=R,A={x|2x(x+3)<1},B={x|y=ln(-1-x)},则图中阴影部分表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知f(x)=x3-3x,过点A(1,m) (m≠-2)可作曲线y=f(x)的三条切线,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)函数f(x)=
ln(2+x-x2)
|x|-x
的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)某集团公司青年、中年、老年职员的人数之比为10:8:7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)有一块直角三角板,∠A=30°,∠C=90°,BC边在桌面上,当三角板所在平面与桌面成 45°角时,AB边与桌面所成角的正弦等于(  )

查看答案和解析>>

同步练习册答案