精英家教网 > 高中数学 > 题目详情
已知α,β∈(-
π
2
π
2
),且tanα,tanβ是方程x2+3
3
x+4=0的两个根,则α+β=
 
分析:由tanα,tanβ是方程x2+3
3
x+4=0的两个根,根据韦达定理表示出两根之和与两根之积,表示出所求角度的正切值,利用两角和的正切函数公式化简后,将表示出的两根之和与两根之积代入即可求出tan(α+β)的值,然后根据两根之和小于0,两根之积大于0,得到两根都为负数,根据α与β的范围,求出α+β的范围,再根据特殊角的三角函数值,由求出的tan(α+β)的值即可求出α+β的值.
解答:解:依题意得tanα+tanβ=-3
3
<0,tanα•tanβ=4>0,
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-3
3
1-4
=
3

易知tanα<0,tanβ<0,又α,β∈(-
π
2
π
2
),
∴α∈(-
π
2
,0),β∈(-
π
2
,0),
∴α+β∈(-π,0),
∴α+β=-
3

故答案为:-
3
点评:此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值,是一道中档题.本题的关键是找出α+β的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=2,则tanα=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1 , 2)
b
=(x , 4)
,若向量
a
b
,则x=
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两定点A(-2,0),B(1,0),动点P满足|PA|=2|PB|.
(1)求动点P的轨迹方程;
(2)设点P的轨迹为曲线C,试求出双曲线x2-
y29
=1
的渐近线与曲线C的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cosxsinφ-2sinxsin2
φ
2
+sinx(0<φ<x)
在x=π处取最小值.
(1)求φ的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=
2
,f(A)=
3
2
,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
(m2-m-2)+(m2+m)i1+i
(m∈R,i是虚数单位)是纯虚数.
(1)求m的值;
(2)若复数w,满足|w-z|=1,求|w|的最大值.

查看答案和解析>>

同步练习册答案