精英家教网 > 高中数学 > 题目详情
设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以AF2为直径的圆与直线y=
3
x+2
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?若存在,求实数m的取值范围,若不存在,请说明理由.
分析:(Ⅰ)由△AF1F2是正三角形,知a=2c,由F2(c,0),A(0,b),知以AF2为直径的圆的圆心为(
1
2
c, 
1
2
b)
,半径r=
1
2
a
,由该圆与直线
3
x-y+2=0
相切,能导出椭圆C的方程.
(Ⅱ)由F2(1,0),知l:y=k(x-1),由
y=k(x-1)
x2
4
+
y2
3
=1
,得(3+4k2)x2-8k2x+4k2-12=0,设M(x1,y1),N(x2,y2),则x1+x2=
8k2
3+4k2
y1+y2=k(x1+x2-2)
PM
+
PN
=(x1-m,y1)+(x2-m,y2)
=(x1+x2-2m,y1+y2),由菱形对角线垂直,知(x1+x2-2m)(x1-x2)+(y1+y2)(y1-y2)=0,由此入手能够推导出存在满足题意的点P且m的取值范围是(0,
1
4
).
解答:解:(Ⅰ)∵△AF1F2是正三角形,∴a=2c,
由已知F2(c,0),A(0,b),
∴以AF2为直径的圆的圆心为(
1
2
c, 
1
2
b)
,半径r=
1
2
a

又该圆与直线
3
x-y+2=0
相切,
|
3
2
c-
b
2
+2|
2
=
a
2

由a=2c,得b=
3
c

a=2,c=1,b=
3

∴椭圆C的方程为
x2
4
+
y2
3
=1

(Ⅱ)由(Ⅰ)知,F2(1,0),l:y=k(x-1),
y=k(x-1)
x2
4
+
y2
3
=1
,得(3+4k2)x2-8k2x+4k2-12=0,
设M(x1,y1),N(x2,y2),
x1+x2=
8k2
3+4k2
y1+y2=k(x1+x2-2)

PM
+
PN
=(x1-m,y1)+(x2-m,y2)
=(x1+x2-2m,y1+y2),
由菱形对角线垂直,则(
PM
+
PN
)•
MN
=0

∴(x1+x2-2m)(x1-x2)+(y1+y2)(y1-y2)=0,
即k(y1+y2)+x1+x2-2m=0,
∴k2(x1+x2-2)+x1+x2-2m=0,
k2(
8k2
3+4k2
-2)+
8k2
3+4k2
-2m=0

由已知条件k≠0,k∈R,
m=
k2
3+4k2
=
1
3
k2
+4

3
k2
>0
,∴0<m<
1
4

故存在满足题意的点P且m的取值范围是(0,
1
4
).
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦点分别为F1,F2,若P 是椭圆上的一点,|
PF1
|+|
PF2
|=4
,离心率e=
3
2

(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
PF1
PF2
=-
5
4
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1,F2,离心率为e=
2
2
,以F1为圆心,|F1F2|为半径的圆与直线x-
3
y-3=0
相切.
(I)求椭圆C的方程;
(II)直线y=x交椭圆C于A、B两点,D为椭圆上异于A、B的点,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案