精英家教网 > 高中数学 > 题目详情

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

(Ⅰ)求所取3张卡片上的数字完全相同的概率;

表示所取3张卡片上的数字的中位数,求的分布列与数学期望

(注:若三个数满足则称为这三个数的中位数).

【答案】见解析

【解析】试题分析:(Ⅰ)先算出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可;(Ⅱ)应先根据题意求出随机变量的所有可能值,再计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现,从而求出数学期望.

试题解析:(Ⅰ)由古典概型中的概率计算公式知所求概率为

的所有可能值为1,2,3,且

的分布列为

1

2

3

从而

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过短轴的一个端点与两个焦点的圆的面积为,过椭圆的右焦点作斜率为的直线与椭圆相交于两点,线段的中点为.

(1)求椭圆的标准方程;

(2)过点垂直于的直线与轴交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:当时,

(2)若当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线相互平行,求的值;

2)试讨论的单调性;

3)设,对任意的,均存在,使得.试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数(个)

加工的时间(小时)

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出关于的线性回归方程.

(3)试预测加工个零件需要多少时间?

附录:参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若曲线的一条切线经过点,求这条切线的方程.

(2)若关于的方程有两个不相等的实数根x1x2

求实数a的取值范围;

证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同直线的极坐标方程为,曲线C的参数方程为为参数,设直线l与曲线C交于AB两点.

写出直线的普通方程与曲线C的直角坐标方程;

已知点P在曲线C上运动,求点P到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度中国某五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量高于4000亿元的省份共有3个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位依次是省、省、省;

④2016年同期省的总量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 的左右焦点分别为的,离心率为;过抛物线焦点的直线交抛物线于两点,当时, 点在轴上的射影为。连结并延长分别交两点,连接 的面积分别记为 ,设.

)求椭圆和抛物线的方程;

)求的取值范围.

查看答案和解析>>

同步练习册答案